Advertisement

Chromosoma

, Volume 123, Issue 3, pp 281–291 | Cite as

Consolidation of the genetic and cytogenetic maps of turbot (Scophthalmus maximus) using FISH with BAC clones

  • Xoana Taboada
  • Jose C. Pansonato-Alves
  • Fausto Foresti
  • Paulino Martínez
  • Ana Viñas
  • Belén G. Pardo
  • Carmen Bouza
Research Article

Abstract

Bacterial artificial chromosomes (BAC) have been widely used for fluorescence in situ hybridization (FISH) mapping of chromosome landmarks in different organisms, including a few in teleosts. In this study, we used BAC-FISH to consolidate the previous genetic and cytogenetic maps of the turbot (Scophthalmus maximus), a commercially important pleuronectiform. The maps consisted of 24 linkage groups (LGs) but only 22 chromosomes. All turbot LGs were assigned to specific chromosomes using BAC probes obtained from a turbot 5× genomic BAC library. It consisted of 46,080 clones with inserts of at least 100 kb and <5 % empty vectors. These BAC probes contained gene-derived or anonymous markers, most of them linked to quantitative trait loci (QTL) related to productive traits. BAC clones were mapped by FISH to unique marker-specific chromosomal positions, which showed a notable concordance with previous genetic mapping data. The two metacentric pairs were cytogenetically assigned to LG2 and LG16, and the nucleolar organizer region (NOR)-bearing pair was assigned to LG15. Double-color FISH assays enabled the consolidation of the turbot genetic map into 22 linkage groups by merging LG8 with LG18 and LG21 with LG24. In this work, a first-generation probe panel of BAC clones anchored to the turbot linkage and cytogenetical map was developed. It is a useful tool for chromosome traceability in turbot, but also relevant in the context of pleuronectiform karyotypes, which often show small hardly identifiable chromosomes. This panel will also be valuable for further integrative genomics of turbot within Pleuronectiformes and teleosts, especially for fine QTL mapping for aquaculture traits, comparative genomics, and whole-genome assembly.

Keywords

BAC library BAC-FISH Genetic map Cytogenetic map Turbot 

Notes

Acknowledgments

This study was supported by Spain’s Ministerio de Ciencia e Innovación (AGL2009-13273), Consolider Ingenio Aquagenomics (CSD200700002) and Xunta de Galicia (09MMA011261PR; 10MMA200027PR). Samples for cytogenetic analysis were kindly supplied by Cluster de Acuicultura de Galicia. Thanks to Víctor González, Manuel Manchado, and Miguel Hermida for technical support and to María López and Vanessa Pérez for technical assistance. We also thank José Antonio Álvarez-Dios for useful comments on the manuscript. The authors wish to acknowledge to the Department of Biología Celular y Ecología of USC for providing the microscope. Finally, the authors are grateful to the people of the laboratory of Dr. Foresti in Botucatu (Brasil) for their technical help with FISH.

Supplementary material

412_2014_452_Fig5_ESM.jpg (248 kb)
Online Resource 1

Linkage map of turbot (Hermida et al. 2013a) showing the markers and BAC clones assayed in this study. (M) Multiple or (X) lack of marker-specific clones in the turbot BAC library; (F) Failed BAC probes for BAC-FISH assays. The centromere-linked marker positions were indicated by grey points according to Martínez et al. (2008). (JPEG 247 kb)

412_2014_452_MOESM1_ESM.tif (23 mb)
High resolution image (TIFF 23512 kb)

References

  1. Asakawa S, Abe I, Kudoh Y, Kishi N, Wang Y, Kubota R, Kudoh J, Kawasaki K, Minoshima S, Shimizu N (1997) Human BAC library: construction and rapid screening. Gene 19:69–79. doi: 10.1016/S0378-1119(97)00044-9 CrossRefGoogle Scholar
  2. Azevedo MFC, Oliveira C, Pardo BG, Martínez P, Foresti F (2008) Phylogenetic analysis of the order Pleuronectiformes (Teleostei) based on sequences of 12S and 16S mitochondrial genes. Genet Mol Biol 31:284–292. doi: 10.1590/S1415-47572008000200023 CrossRefGoogle Scholar
  3. Bouza C, Sánchez L, Martnez P (1994) Karyotypic characterization of turbot (Scophthalmus maximus) with conventional, fluorochrome and restriction endonuclease-banding techniques. Mar Biol 120:609–613. doi: 10.1007/BF00350082 Google Scholar
  4. Bouza C, Hermida M, Pardo BG, Fernández C, Fortes GG, Castro J, Sánchez L, Presa P, Pérez M, Sanjuán A, de Carlos A, Alvarez-Dios JA, Ezcurra S, Cal RM, Piferrer F, Martínez P (2007) A microsatellite genetic map of the turbot (Scophthalmus maximus). Genetics 177:2457–2467. doi: 10.1534/genetics.107.075416 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bouza C, Hermida M, Pardo BG, Vera M, Fernández C, de la Herrán R, Navajas-Pérez R, Álvarez-Dios JA, Gómez-Tato A, Martínez P (2012) An Expressed Sequence Tag (EST)-enriched genetic map of turbot (Scophthalmus maximus): a useful framework for comparative genomics across model and farmed teleosts. BMC Genet 13:54. doi: 10.1186/1471-2156-13-54 PubMedCentralPubMedCrossRefGoogle Scholar
  6. Brenna-Hansen S, Li J, Kent MP, Boulding EG, Dominik S, Davidson WS, Lien S (2012) Chromosomal differences between European and North American Atlantic salmon discovered by linkage mapping and supported by fluorescence in situ hybridization analysis. BMC Genomics 13:432. doi: 10.1186/1471-2164-13-432
  7. Campbell MA, Chen W-J, López JA (2013) Are flatfishes (Pleuronectiformes) monophyletic? Mol Phylogenet Evol 69:664–673. doi: 10.1016/j.ympev.2013.07.011 PubMedCrossRefGoogle Scholar
  8. Canario A, Bargelloni L, Volckaert F, Houston RD, Massault C, Guiguen Y (2008) Genomics toolbox for farmed fish. Rev Fish Sci 16:1–13. doi: 10.1080/10641260802319479 CrossRefGoogle Scholar
  9. Cerdà J, Manchado M (2013) Advances in genomics for flatfish aquaculture. Genes Nutr 8:5–17. doi: 10.1007/s12263-012-0312-8 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288. doi: 10.1016/S1055-7903(02)00371-8 PubMedCrossRefGoogle Scholar
  11. Cioffi MB, Sánchez A, Marchal JA, Kosyakova N, Liehr T, Trifonov V, Bertollo LA (2011) Cross-species chromosome painting tracks the independent origin of multiple sex chromosomes in two cofamiliar Erythrinidae fishes. BMC Evol Biol 11:186. doi: 10.1186/1471-2148-11-186 PubMedCentralPubMedCrossRefGoogle Scholar
  12. Cuñado N, Terrones J, Sánchez L, Martínez P, Santos JL (2001) Synaptonemal complex analysis in spermatocytes and oocytes of turbot, Scophthalmus  maximus (Pisces, Scophthalmidae). Genome 44:1143–1147. doi: 10.1139/gen-44-6-1143
  13. Cuñado N, Terrones J, Sánchez L, Martínez P, Santos JL (2002) Sex-dependent synaptic behaviour in triploid turbot, Scophthalmus maximus (Pisces, Scophthalmidae). Hered (Edinb) 89:460–464. doi: 10.1038/sj.hdy.6800165 CrossRefGoogle Scholar
  14. Danzmann RG, Gharbi K (2001) Gene mapping in fishes: a means to an end. Genetica 111:3–23. doi: 10.1023/A:1013713431255 PubMedCrossRefGoogle Scholar
  15. FEAP (2010) Federation of European Aquaculture Producers. Production and Price reports of member associations of the FEAP. http://www.feap.info. Accessed 2 December 2013
  16. Foresti F, Almeida-Toledo LF, Toledo-Filho AS (1981) Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet Cell Genet 31:137–144. doi: 10.1159/000131639 PubMedCrossRefGoogle Scholar
  17. Freeman JL, Adeniyi A, Banerjee R, Dallaire S, Maguire SF, Chi J, Ng BL, Zepeda C, Scott CE, Humphray S, Rogers J, Zhou Y, Zon LI, Carter NP, Yang F, Lee C (2007) Definition of the zebrafish genome using flow cytometry and cytogenetic mapping. BMC Genomics 8:195. doi: 10.1186/1471-2164-8-195 PubMedCentralPubMedCrossRefGoogle Scholar
  18. García-Cegarra A, Merlo MA, Ponce M, Portela-Bens S, Cross I, Manchado M, Rebordinos L (2013) A preliminary genetic map in Solea senegalensis (Pleuronectiformes, Soleidae) using BAC-FISH and next-generation sequencing. Cytogenet Genome Res 1:227–240. doi: 10.1159/000355001
  19. Gross JB, Protas M, Conrad M, Scheid PE, Vidal O, Jeffery WR, Borowsky R, Tabin CJ (2008) Synteny and candidate gene prediction using an anchored linkage map of Astyanax mexicanus. Proc Natl Acad Sci U S A 105:20106–20111. doi: 10.1073/pnas.0806238105 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Guyon R, Rakotomanga M, Azzouzi N, Coutanceau JP, Bonillo C, D’Cotta H, Pepey E, Soler L, Rodier-Goud M, D’Hont A, Conte MA, van Bers NE, Penman DJ, Hitte C, Crooijmans RP, Kocher TD, Ozouf-Costaz C, Baroiller JF, Galibert F (2012) A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics 13:222. doi: 10.1186/1471-2164-13-222 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Hermida M, Bouza C, Fernández C, Sciara AA, Rodríguez-Ramilo ST, Fernández J, Martínez P (2013a) Compilation of mapping resources in turbot (Scophthalmus maximus): a new integrated consensus genetic map. Aquaculture 414–415:19–25. doi: 10.1016/j.aquaculture.2013.07.040 CrossRefGoogle Scholar
  22. Hermida M, Rodríguez-Ramilo ST, Hachero-Cruzado I, Herrera M, Sciara AA, Bouza C, Fernández J, Martínez P (2013b) First genetic linkage map for comparative mapping and QTL screening of brill (Scophthalmus rhombus). Aquaculture. doi: 10.1016/j.aquaculture.2013.02.041 Google Scholar
  23. Jeukens J, Boyle B, Kukavica-Ibrulj I, St-Cyr J, Lévesque RC, Bernatchez L (2011) BAC library construction, screening and clone sequencing of lake whitefish (Coregonus clupeaformis, Salmonidae) towards the elucidation of adaptive species divergence. Mol Ecol Resour 11:541–549. doi: 10.1111/j.1755-0998.2011.02982.x PubMedCrossRefGoogle Scholar
  24. Kai W, Kikuchi K, Tohari S, Chew AK, Tai A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y, Venkatesh B (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in Teleosts and mammals. Genome Biol Evol 3:424–442. doi: 10.1093/gbe/evr041 PubMedCrossRefGoogle Scholar
  25. Kuhl H, Beck A, Wozniak G, Canario AV, Volckaert FA, Reinhardt R (2010) The European sea bass Dicentrarchus labrax genome puzzle: comparative BAC-mapping and low coverage shotgun sequencing. BMC Genomics 11:68. doi: 10.1186/1471-2164-11-68 PubMedCentralPubMedCrossRefGoogle Scholar
  26. Kuhl H, Tine M, Beck A, Timmermann B, Kodira C, Reinhardt R (2011) Directed sequencing and annotation of three Dicentrarchus labrax L. chromosomes by applying Sanger- and pyrosequencing technologies on pooled DNA of comparatively mapped BAC clones. Genomics 98:202–212. doi: 10.1016/j.ygeno.2011.06.004 PubMedCrossRefGoogle Scholar
  27. Lei JL, Liu XF (2011) Culture of turbot: Chinese perspective. In: Daniels HV, Watanabe WO (ed) Practical Flatfish Culture and Stock Enhancement. Wiley- Blackwell, pp185–202Google Scholar
  28. Lorenz S, Brenna-Hansen S, Moen T, Roseth A, Davidson WS, Omholt SW, Lien S (2010) BAC-based upgrading and physical integration of a genetic SNP map in Atlantic salmon. Anim Genet 41:48–54. doi: 10.1111/j.1365-2052.2009.01963.x PubMedCrossRefGoogle Scholar
  29. Luo MC, Xu K, Ma Y, Deal KR, Nicolet CM, Dvorak J (2009) A high-throughput strategy for screening of bacterial artificial chromosome libraries and anchoring of clones on a genetic map constructed with single nucleotide polymorphisms. BMC Genomics 10:28. doi: 10.1186/1471-2164-10-28 PubMedCentralPubMedCrossRefGoogle Scholar
  30. Martínez P, Hermida M, Pardo BG, Fernández C, Castro J, Cal RM, Álvarez-Dios JA, Gómez-Tato A, Bouza C (2008) Centromere-linkage in the turbot (Scophthalmus maximus) through half-tetrad analysis in diploid meiogynogenetics. Aquaculture 280:81–88. doi: 10.1016/j.aquaculture.2008.05.011 CrossRefGoogle Scholar
  31. Martínez P, Bouza C, Hermida M, Fernández J, Toro MA, Vera M, Pardo B, Millán A, Fernández C, Vilas R, Viñas A, Sánchez L, Felip A, Piferrer F, Ferreiro I, Cabaleiro S (2009) Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183:1443–1452. doi: 10.1534/genetics.109.107979 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Maughan PJ, Turner TB, Coleman CE, Elzinga DB, Jellen EN, Morales JA, Udall JA, Fairbanks DJ, Bonifacio A (2009) Characterization of Salt Overly Sensitive 1 (SOS1) gene homoeologs in quinoa (Chenopodium quinoa Willd.). Genome 52:647–657. doi: 10.1139/G09-041 PubMedCrossRefGoogle Scholar
  33. Mazzuchelli J, Kocher TD, Yang F, Martins C (2012) Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics 13:463. doi: 10.1186/1471-2164-13-46 PubMedCentralPubMedCrossRefGoogle Scholar
  34. Molina-Luzón MJ, López JR, Navajas-Pérez R, Robles F, Ruiz-Rejón C, de la Herrán R (2012) Validation and comparison of microsatellite markers derived from Senegalese sole (Solea senegalensis, Kaup) genomic and expressed sequence tags libraries. Mol Ecol Res 12:956–966. doi: 10.1111/j.1755-0998.2012.03163.x Google Scholar
  35. Monaco AP, Larin Z (1994) YACs, BACs, PACs and MACs: artificial chromosomes as research tools. Trends Biotechnol 12:280–286. doi: 10.1016/0167-7799(94)90140-6 PubMedCrossRefGoogle Scholar
  36. Ninwichian P, Peatman E, Liu H, Kucuktas H, Somridhivej B, Liu S, Li P, Jiang Y, Sha Z, Kaltenboeck L, Abernathy JW, Wang W, Chen F, Lee Y, Wong L, Wang S, Lu J, Liu Z (2012) Second-generation genetic linkage map of catfish and its integration with the BAC-based physical map. Bethesda 2:1233–1241. doi: 10.1534/g3.112.003962 Google Scholar
  37. Oliveira C, Almeida-Toledo LF, Foresti F (2007) Karyotypic evolution in Neotropical fishes. In Pisano E, Ozouf-Costaz C, Foresti F, Kappor BG (ed). Fish cytogenetics. Enfield, pp 111–164Google Scholar
  38. Palti Y, Genet C, Luo MC, Charlet A, Gao G, Hu Y, Castaño-Sánchez C, Tabet-Canale K, Krieg F, Yao J, Vallejo RL, Rexroad CE (2011) A first generation integrated map of the rainbow trout genome. BMC Genomics 12:180. doi: 10.1186/1471-2164-12-180 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Pardo BG, Bouza C, Castro J, Martínez P, Sánchez L (2001) Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization. Hered (Edinb) 86:531–536. doi: 10.1046/j.1365-2540.2001.00802.x
  40. Paux E, Legeai F, Guilhot N, Adam-Blondon AF, Alaux M, Salse J, Sourdille P, Leroy P, Feuillet C (2008) Physical mapping in large genomes: accelerating anchoring of BAC contigs to genetic maps through in silico analysis. Funct Integr Genomics 8:29–32. doi: 10.1007/s10142-007-0068-1 PubMedCrossRefGoogle Scholar
  41. Phillips RB, Amores A, Morasch MR, Wilson C, Postlethwait JH (2006a) Assignment of zebrafish genetic linkage groups to chromosomes. Cytogenet Genome Res 114:155–162. doi: 10.1159/000093332 PubMedCrossRefGoogle Scholar
  42. Phillips RB, Nichols KM, DeKoning JJ, Morasch MR, Keatley KA, Rexroad C 3rd, Gahr SA, Danzmann RG, Drew RE, Thorgaard GH (2006b) Assignment of rainbow trout linkage groups to specific chromosomes. Genetics 174:1661–1670. doi: 10.1534/genetics.105.055269 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Phillips RB, Keatley KA, Morasch MR, Ventura AB, Lubieniecki KP, Koop BF, Danzmann RG, Davidson WS (2009) Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss). BMC Genet 10:46. doi: 10.1186/1471-2156-10-46
  44. Phillips RB, Park LK, Naish KA (2013) Assignment of Chinook Salmon (Oncorhynchus tshawytscha) linkage groups to specific chromosomes reveals a karyotype with multiple rearrangements of the chromosome arms of rainbow trout (Oncorhynchus mykiss). Gene Genomes Genet. 3:2289–2295. doi: 10.1534/g3.113.008078
  45. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83:2934–2938PubMedCentralPubMedCrossRefGoogle Scholar
  46. Rodríguez-Ramilo ST, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Martínez P, Fernández J (2011) QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genomics 12:541. doi: 10.1186/1471-2164-12-541
  47. Rodríguez-Ramilo ST, De La Herrán R, Ruiz-Rejón C, Hermida M, Fernández C, Pereiro P, Figueras A, Bouza C, Toro MA, Martínez P, Fernández J (2013a) Identification of quantitative trait loci associated with resistance to viral haemorrhagic septicaemia (VHS) in turbot (Scophthalmus maximus): a comparison between bacterium, parasite and virus diseases. Mar Biotechnol (NY). doi: 10.1007/s10126-013-9544-x Google Scholar
  48. Rodríguez-Ramilo ST, Fernández J, Toro MA, Bouza C, Hermida M, Fernández C, Pardo BG, Cabaleiro S, Martínez P (2013b) Uncovering QTL for resistance and survival time to Philasterides dicentrarchi in turbot (Scophthalmus maximus). Anim Genet 44:149–157. doi: 10.1111/j.1365-2052.2012.02385.x PubMedCrossRefGoogle Scholar
  49. Ross JA, Peichel CL (2008) Molecular cytogenetic evidence of rearrangements on the Y chromosome of the threespine stickleback fish. Genetics 179:2173–2182. doi: 10.1534/genetics.108.088559 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Ruan X, Wang W, Kong J, Yu F, Huang X (2010) Genetic linkage mapping of turbot (Scophthalmus maximus L.) using microsatellite markers and its application in QTL analysis. Aquaculture 308:89–100. doi: 10.1016/j.aquaculture.2010.08.010 CrossRefGoogle Scholar
  51. Sánchez-Molano E, Cerna A, Toro MA, Bouza C, Hermida M, Pardo BG, Cabaleiro S, Fernández J, Martínez P (2011) Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12:473. doi: 10.1186/1471-2164-12-473 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Sasaki T, Shimizu A, Ishikawa SK, Imai S, Asakawa S, Murayama Y, Khorasani MZ, Mitani H, Furutani-Seiki M, Kondoh H, Nanda I, Schmid M, Schartl M, Nonaka M, Takeda H, Hori H, Himmelbauer H, Shima A, Shimizu N (2007) The DNA sequence of medaka chromosome LG22. Genomics 89:124–133. doi: 10.1016/j.ygeno.2006.09.003 PubMedCrossRefGoogle Scholar
  53. Shao CW, Chen SL, Scheuring CF, Xu JY, Sha ZX, Dong XL, Zhang HB (2010) Construction of two BAC libraries from half-smooth tongue sole Cynoglossus semilaevis and identification of clones containing candidate sex-determination genes. Mar Biotechnol (NY) 12:558–568. doi: 10.1007/s10126-009-9242-x CrossRefGoogle Scholar
  54. Shimoda N, Knapik EW, Ziniti J, Sim C, Yamada E, Kaplan S, Jackson D, de Sauvage F, Jacob H, Fishman MC (1999) Zebrafish genetic map with 2000 microsatellite markers. Genomics 58:219–232. doi: 10.1006/geno.1999.5824 PubMedCrossRefGoogle Scholar
  55. Urton JR, McCann SR, Peichel CL (2011) Karyotype differentiation between two stickleback species (Gasterosteidae). Cytogenet Genome Res 135:150–159. doi: 10.1159/000331232 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Viñas A, Taboada X, Vale L, Robledo D, Hermida M, Vera M, Martínez P (2012) Mapping of DNA sex-specific markers and genes related to sex differentiation in turbot (Scophthalmus maximus). Mar Biotechnol (NY) 14:655–663. doi: 10.1007/s10126-012-9451-6 CrossRefGoogle Scholar
  57. Wang S, Xu P, Thorsen J, Zhu B, de Jong PJ, Waldbieser G, Kucuktas H, Liu Z (2007) Characterization of a BAC library from channel catfish Ictalurus punctatus: indications of high levels of chromosomal reshuffling among teleost genomes. Mar Biotechnol (NY) 9:701–711. doi: 10.1007/s10126-007-9021-5
  58. Wang CM, Lo LC, Feng F, Gong P, Li J, Zhu ZY, Lin G, Yue GH (2008) Construction of a BAC library and mapping BAC clones to the linkage map of Barramundi, Lates calcarifer. BMC Genomics 9:139. doi: 10.1186/1471-2164-9-139
  59. Wang X, Zhang Q, Ren J, Jiang Z, Wang C, Zhuang W, Zhai T (2009) The preparation of sex-chromosome-specific painting probes and construction of sex chromosome DNA library in half-smooth tongue sole (Cynoglossus semilaevis). Aquaculture 297:78–84. doi: 10.1016/j. aquaculture .2009.09.020 CrossRefGoogle Scholar
  60. Xia JH, Feng F, Lin G, Wang CM, Yue GH (2010) A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One 5:e11974. doi: 10.1371/journal.pone.0011974 PubMedCentralPubMedCrossRefGoogle Scholar
  61. Xu P, Wang S, Liu L, Peatman E, Somridhivej B, Thimmapuram J, Gong G, Liu Z (2006) Channel catfish BAC-end sequences for marker development and assessment of syntenic conservation with other fish species. Anim Genet 37:321–326. doi: 10.1111/j.1365-2052.2006.01453.x PubMedCrossRefGoogle Scholar
  62. Xu P, Wang S, Liu L, Thorsen J, Kucuktas H, Liu Z (2007) A BAC-based physical map of the channel catfish genome. Genomics 90:380–388. doi: 10.1016/j.ygeno.2007.05.008 PubMedCrossRefGoogle Scholar
  63. Xu P, Li J, Li Y, Cui R, Wang J, Wang J, Zhang Y, Zhao Z, Sun X (2011) Genomic insight into the common carp (Cyprinus carpio) genome by sequencing analysis of BAC-end sequences. BMC Genomics 12:188. doi: 10.1186/1471-2164-12-188 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Yim YS, Moak P, Sanchez-Villeda H, Musket TA, Close P, Klein PE, Mullet JE, McMullen MD, Fang Z, Schaeffer ML, Gardiner JM, Coe EH Jr, Davis GL (2007) A BAC pooling strategy combined with PCR-based screenings in a large, highly repetitive genome enables integration of the maize genetic and physical maps. BMC Genomics 8:47. doi: 10.1186/1471-2164-8-47 PubMedCentralPubMedCrossRefGoogle Scholar
  65. You FM, Luo MC, Xu K, Deal KR, Anderson OD, Dvorak J (2010) A new implementation of high-throughput five-dimensional clone pooling strategy for BAC library screening. BMC Genomics 11:692. doi: 10.1186/1471-2164-11-692 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Zhang Y, Zhang X, Scheuring CF, Zhang HB, Huan P, Li F, Xiang J (2008) Construction and characterization of two bacterial artificial chromosome libraries of Zhikong scallop, Chlamys farreri Jones et Preston, and identification of BAC clones containing the genes involved in its innate immune system. Mar Biotechnol (NY) 10:358–365. doi: 10.1007/s10126-007-9071-8 CrossRefGoogle Scholar
  67. Zhao L, Zhang Y, Ji P, Zhang X, Zhao Z, Hou G, Huo L, Liu G, Li C, Xu P, Sun X (2013) A dense genetic linkage map for common carp and its integration with a BAC-based physical map. PLoS One 8:e63928. doi: 10.1371/journal.pone.0063928 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xoana Taboada
    • 1
  • Jose C. Pansonato-Alves
    • 2
  • Fausto Foresti
    • 2
  • Paulino Martínez
    • 3
  • Ana Viñas
    • 1
  • Belén G. Pardo
    • 3
  • Carmen Bouza
    • 3
  1. 1.Departamento de Genética, Facultad de Biología, CIBUSUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Departamento de MorfologiaUniversidade Estadual PaulistaBotucatuBrazil
  3. 3.Departamento de Genética. Facultad de VeterinariaUniversidad de Santiago de CompostelaLugoSpain

Personalised recommendations