Skip to main content
Log in

Safeguarding genetic information in Drosophila

  • Mini-Review
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

Eukaryotic cells employ a plethora of conserved proteins and mechanisms to ensure genome integrity. In metazoa, these mechanisms must operate in the context of organism development. This mini-review highlights two emerging features of DNA damage responses in Drosophila: a crosstalk between DNA damage responses and components of the spindle assembly checkpoint, and increasing evidence for the effect of DNA damage on the developmental program at multiple points during the Drosophila life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdu U, Brodsky M, Schupbach T (2002) Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr Biol 12:1645–1651

    Article  PubMed  CAS  Google Scholar 

  • Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR (2002) Role for a Drosophila Myb-containing protein complex in site-specific DNA replication. Nature 420:833–837

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Zhimulev IF, Volkova EI, Alekseyenko AA, Moshkin YM, Koryakov DE (1998) Su(UR)ES: a gene suppressing DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster polytene chromosomes. Proc Natl Acad Sci USA 95:7532–7537

    Article  PubMed  CAS  Google Scholar 

  • Bosco G, Du W, Orr-Weaver TL (2001) DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol 3:289–295

    Article  PubMed  CAS  Google Scholar 

  • Branzei D, Foiani M (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219

    Article  PubMed  CAS  Google Scholar 

  • Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG, Rio DC, Rubin GM (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24:1219–1231

    Article  PubMed  CAS  Google Scholar 

  • Buffin E, Lefebvre C, Huang J, Gagou ME, Karess RE (2005) Recruitment of Mad2 to the kinetochore requires the Rod/Zw10 complex. Curr Biol 15:856–861

    Article  PubMed  CAS  Google Scholar 

  • Cenci G (2009) Drosophila cell cycle under arrest: uncapped telomeres plead guilty. Cell Cycle 8:990–995

    Article  PubMed  CAS  Google Scholar 

  • Cenci G, Siriaco G, Raffa GD, Kellum R, Gatti M (2003) The Drosophila HOAP protein is required for telomere capping. Nat Cell Biol 5:82–84

    Article  PubMed  CAS  Google Scholar 

  • Cenci G, Ciapponi L, Gatti M (2005) The mechanism of telomere protection: a comparison between Drosophila and humans. Chromosoma 114:135–145

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Pane A, Schupbach T (2007) Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint activation in Drosophila. Curr Biol 17:637–642

    Article  PubMed  CAS  Google Scholar 

  • Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH (2011) Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–744

    Article  PubMed  CAS  Google Scholar 

  • Claycomb JM, MacAlpine DM, Evans JG, Bell SP, Orr-Weaver TL (2002) Visualization of replication initiation and elongation in Drosophila. J Cell Biol 159:225–236

    Article  PubMed  CAS  Google Scholar 

  • Cook JG (2009) Replication licensing and the DNA damage checkpoint. Front Biosci 14:5013–5030

    Article  PubMed  CAS  Google Scholar 

  • Ding Q, MacAlpine DM (2010) Preferential re-replication of Drosophila heterochromatin in the absence of geminin. PLoS Genet 6:e1001112

    Article  Google Scholar 

  • Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM (2010) Conserved nucleosome positioning defines replication origins. Genes Dev 24:748–753

    Article  PubMed  CAS  Google Scholar 

  • Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM (2011) Chromatin signatures of the Drosophila replication program. Genome Res 21:164–174

    Article  PubMed  CAS  Google Scholar 

  • Fan Y, Bergmann A (2008) Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Dev Cell 14:399–410

    Article  PubMed  CAS  Google Scholar 

  • Fogarty P, Campbell SD, Abu-Shumays R, Phalle BS, Yu KR, Uy GL, Goldberg ML, Sullivan W (1997) The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr Biol 7:418–426

    Article  PubMed  CAS  Google Scholar 

  • Fox DT, Gall JG, Spradling AC (2010) Error-prone polyploid mitosis during normal Drosophila development. Genes Dev 24:2294–2302

    Article  PubMed  CAS  Google Scholar 

  • Garner M, van Kreeveld S, Su TT (2001) mei-41 and bub1 block mitosis at two distinct steps in response to incomplete DNA replication in Drosophila embryos. Curr Biol 11:1595–1599

    Article  PubMed  CAS  Google Scholar 

  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P (2003) Cyclin E ablation in the mouse. Cell 114:431–443

    Article  PubMed  CAS  Google Scholar 

  • Ghabrial A, Schupbach T (1999) Activation of a meiotic checkpoint regulates translation of Gurken during Drosophila oogenesis. Nat Cell Biol 1:354–357

    Article  PubMed  CAS  Google Scholar 

  • Halme A, Cheng M, Hariharan IK (2010) Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol 20:458–463

    Article  PubMed  CAS  Google Scholar 

  • Jaklevic BR, Su TT (2004) Relative contribution of DNA repair, cell cycle checkpoints, and cell death to survival after DNA damage in Drosophila larvae. Curr Biol 14:23–32

    Article  PubMed  CAS  Google Scholar 

  • Joyce EF, McKim KS (2009) Drosophila PCH2 is required for a pachytene checkpoint that monitors double-strand-break-independent events leading to meiotic crossover formation. Genetics 181:39–51

    Article  PubMed  Google Scholar 

  • Karess R (2005) Rod-Zw10-Zwilch: a key player in the spindle checkpoint. Trends Cell Biol 15:386–392

    Article  PubMed  CAS  Google Scholar 

  • Karpac J, Younger A, Jasper H (2011) Dynamic coordination of innate immune signaling and insulin signaling regulates systemic responses to localized DNA damage. Dev Cell 20:841–854

    Article  PubMed  CAS  Google Scholar 

  • Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE (2007) Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell 12:45–55

    Article  PubMed  CAS  Google Scholar 

  • Kondo S, Perrimon N (2011) A genome-wide RNAi screen identifies core components of the G-M DNA damage checkpoint. Sci Signal 4:rs1

    Article  PubMed  CAS  Google Scholar 

  • Lancaster OM, Breuer M, Cullen CF, Ito T, Ohkura H (2010) The meiotic recombination checkpoint suppresses NHK-1 kinase to prevent reorganisation of the oocyte nucleus in Drosophila. PLoS Genet 6:e1001179

    Article  PubMed  Google Scholar 

  • Li C, Jin J (2011) DNA replication licensing control and rereplication prevention. Protein Cell 1:227–236

    Article  Google Scholar 

  • Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY (2010) Apoptotic cells activate the "phoenix rising" pathway to promote wound healing and tissue regeneration. Sci Signal 3:ra13

    Article  PubMed  Google Scholar 

  • Lilly MA, Duronio RJ (2005) New insights into cell cycle control from the Drosophila endocycle. Oncogene 24:2765–2775

    Article  PubMed  CAS  Google Scholar 

  • Lilly MA, Spradling AC (1996) The Drosophila endocycle is controlled by Cyclin E and lacks a checkpoint ensuring S-phase completion. Genes Dev 10:2514–2526

    Article  PubMed  CAS  Google Scholar 

  • Lu WJ, Chapo J, Roig I, Abrams JM (2010) Meiotic recombination provokes functional activation of the p53 regulatory network. Science 328:1278–1281

    Article  PubMed  CAS  Google Scholar 

  • Makunin IV, Volkova EI, Belyaeva ES, Nabirochkina EN, Pirrotta V, Zhimulev IF (2002) The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes. Genetics 160:1023–1034

    PubMed  CAS  Google Scholar 

  • Maringele L, Lydall D (2002) EXO1-dependent single-stranded DNA at telomeres activates subsets of DNA damage and spindle checkpoint pathways in budding yeast yku70Delta mutants. Genes Dev 16:1919–1933

    Article  PubMed  CAS  Google Scholar 

  • Martin FA, Perez-Garijo A, Morata G (2009) Apoptosis in Drosophila: compensatory proliferation and undead cells. Int J Dev Biol 53:1341–1347

    Article  PubMed  Google Scholar 

  • McCleland ML, Shermoen AW, O'Farrell PH (2009) DNA replication times the cell cycle and contributes to the mid-blastula transition in Drosophila embryos. J Cell Biol 187:7–14

    Article  PubMed  CAS  Google Scholar 

  • McNamee LM, Brodsky MH (2009) p53-independent apoptosis limits DNA damage-induced aneuploidy. Genetics 182:423–435

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR (2008) Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 22:3158–3171

    Article  PubMed  CAS  Google Scholar 

  • Mihaylov IS, Kondo T, Jones L, Ryzhikov S, Tanaka J, Zheng J, Higa LA, Minamino N, Cooley L, Zhang H (2002) Control of DNA replication and chromosome ploidy by geminin and cyclin A. Mol Cell Biol 22:1868–1880

    Article  PubMed  CAS  Google Scholar 

  • Munoz P, Blanco R, de Carcer G, Schoeftner S, Benetti R, Flores JM, Malumbres M, Blasco MA (2009) TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol Cell Biol 29:1608–1625

    Article  PubMed  CAS  Google Scholar 

  • Musaro M, Ciapponi L, Fasulo B, Gatti M, Cenci G (2008) Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint. Nat Genet 40:362–366

    Article  PubMed  CAS  Google Scholar 

  • Nordman J, Li S, Eng T, Macalpine D, Orr-Weaver TL (2010) Developmental control of the DNA replication and transcription programs. Genome Res 21:175–181

    Article  PubMed  Google Scholar 

  • Oikemus SR, McGinnis N, Queiroz-Machado J, Tukachinsky H, Takada S, Sunkel CE, Brodsky MH (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev 18:1850–1861

    Article  PubMed  CAS  Google Scholar 

  • Orr B, Afonso O, Feijao T, Sunkel CE (2010) Driving chromosome segregation: lessons from the human and Drosophila centromere-kinetochore machinery. Biochem Soc Trans 38:1667–1675

    Article  PubMed  CAS  Google Scholar 

  • Parisi T, Beck AR, Rougier N, McNeil T, Lucian L, Werb Z, Amati B (2003) Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J 22:4794–4803

    Article  PubMed  CAS  Google Scholar 

  • Park EA, Macalpine DM, Orr-Weaver TL (2007) Drosophila follicle cell amplicons as models for metazoan DNA replication: a cyclinE mutant exhibits increased replication fork elongation. Proc Natl Acad Sci USA 104:16739–16746

    Article  PubMed  CAS  Google Scholar 

  • Pindyurin AV, Boldyreva LV, Shloma VV, Kolesnikova TD, Pokholkova GV, Andreyeva EN, Kozhevnikova EN, Ivanoschuk IG, Zarutskaya EA, Demakov SA, Gorchakov AA, Belyaeva ES, Zhimulev IF (2008) Interaction between the Drosophila heterochromatin proteins SUUR and HP1. J Cell Sci 121:1693–1703

    Article  PubMed  CAS  Google Scholar 

  • Quinn LM, Herr A, McGarry TJ, Richardson H (2001) The Drosophila Geminin homolog: roles for Geminin in limiting DNA replication, in anaphase and in neurogenesis. Genes Dev 15:2741–2754

    Article  PubMed  CAS  Google Scholar 

  • Royou A, Macias H, Sullivan W (2005) The Drosophila Grp/Chk1 DNA damage checkpoint controls entry into anaphase. Curr Biol 15:334–339

    Article  PubMed  CAS  Google Scholar 

  • Royou A, Gagou ME, Karess R, Sullivan W (2010) BubR1- and Polo-coated DNA tethers facilitate poleward segregation of acentric chromatids. Cell 140:235–245

    Article  PubMed  CAS  Google Scholar 

  • Royzman I, Austin RJ, Bosco G, Bell SP, Orr-Weaver TL (1999) ORC localization in Drosophila follicle cells and the effects of mutations in dE2F and dDP. Genes Dev 13:827–840

    Article  PubMed  CAS  Google Scholar 

  • Ryoo HD, Gorenc T, Steller H (2004) Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Dev Cell 7:491–501

    Article  PubMed  CAS  Google Scholar 

  • Shermoen AW, McCleland ML, O'Farrell PH (2011) Developmental control of late replication and S phase length. Curr Biol 20:2067–2077

    Article  Google Scholar 

  • Sibon OC, Stevenson VA, Theurkauf WE (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388:93–97

    Article  PubMed  CAS  Google Scholar 

  • Sibon OC, Laurencon A, Hawley R, Theurkauf WE (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr Biol 9:302–312

    Article  PubMed  CAS  Google Scholar 

  • Sibon OC, Kelkar A, Lemstra W, Theurkauf WE (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat Cell Biol 2:90–95

    Article  PubMed  CAS  Google Scholar 

  • Smith J, Tho LM, Xu N, Gillespie DA (2010) The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108:73–112

    Article  PubMed  CAS  Google Scholar 

  • Smits VA, Warmerdam DO, Martin Y, Freire R (2010) Mechanisms of ATR-mediated checkpoint signalling. Front Biosci 15:840–853

    Article  PubMed  CAS  Google Scholar 

  • Su TT (2006) Cellular responses to DNA damage: one signal, multiple choices. Annu Rev Genet 40:187–208

    Article  PubMed  CAS  Google Scholar 

  • Su TT, O'Farrell PH (1997) Chromosome association of minichromosome maintenance proteins in Drosophila mitotic cycles. J Cell Biol 139:13–21

    Article  PubMed  CAS  Google Scholar 

  • Su TT, O'Farrell PH (1998) Chromosome association of minichromosome maintenance proteins in Drosophila endoreplication cycles. J Cell Biol 140:451–460

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Kelkar A, Theurkauf WE (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113:87–99

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Kwak S, Koppetsch BS, Theurkauf WE (2007) grp (chk1) replication-checkpoint mutations and DNA damage trigger a Chk2-dependent block at the Drosophila midblastula transition. Development 134:1737–1744

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Araki H (2010) Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 119:565–574

    Article  PubMed  CAS  Google Scholar 

  • Thomer M, May NR, Aggarwal BD, Kwok G, Calvi BR (2004) Drosophila double-parked is sufficient to induce re-replication during development and is regulated by cyclin E/CDK2. Development 131:4807–4818

    Article  PubMed  CAS  Google Scholar 

  • Tower J (2004) Developmental gene amplification and origin regulation. Annu Rev Genet 38:273–304

    Article  PubMed  CAS  Google Scholar 

  • Truong LN, Wu X (2011) Prevention of DNA re-replication in eukaryotic cells. J Mol Cell Biol 3:13–22

    Article  PubMed  CAS  Google Scholar 

  • Whittaker AJ, Royzman I, Orr-Weaver TL (2000) Drosophila double parked: a conserved, essential replication protein that colocalizes with the origin recognition complex and links DNA replication with mitosis and the down-regulation of S phase transcripts. Genes Dev 14:1765–1776

    PubMed  CAS  Google Scholar 

  • Wichmann A, Jaklevic B, Su TT (2006) Ionizing radiation induces caspase-dependent but Chk2- and p53-independent cell death in Drosophila melanogaster. Proc Natl Acad Sci USA 103:9952–9957

    Article  PubMed  CAS  Google Scholar 

  • Zegerman P, Diffley JF (2009) DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst) 8:1077–1088

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I thank the members of my lab for helpful critical comments. The work in the Su Lab is funded by a grant from the NIH (GM87276) to T.T.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tin Tin Su.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, T.T. Safeguarding genetic information in Drosophila . Chromosoma 120, 547–555 (2011). https://doi.org/10.1007/s00412-011-0342-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-011-0342-9

Keywords

Navigation