Skip to main content
Log in

Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium

  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

To determine the influence of increased gene expression and amplification in colorectal carcinoma on chromatin structure, the nuclear distances between pairs of bacterial artificial chromosome (BAC) clones with genomic separation from 800 to 29,000 kb were measured and compared between the tumor and parallel epithelial cells of six patients. The nuclear distances were measured between the loci in chromosomal bands 7p22.3–7p21.3; 7q35–7q36.3; 11p15.5–11p15.4; 20p13; 20p12.2; 20q11.21 and 20q12 where increased expression had been found in all types of colorectal carcinoma. The loci were visualized by three-dimensional fluorescence in situ hybridization using 22 BAC clones. Our results show that for short genomic separations, mean nuclear distance increases linearly with increased genomic separation. The results for some pairs of loci fell outside this linear slope, indicating the existence of different levels of chromatin folding. For the same genomic separations the nuclear distances were frequently shorter for tumor as compared with epithelial cells. Above the initial growing phase of the nuclear distances, a plateau phase was observed in both cell types where the increase in genomic separation was not accompanied by an increase in nuclear distance. The ratio of the mean nuclear distances between the corresponding loci in tumor and epithelium cells decreases with increasing amplification of loci. Our results further show that the large-scale chromatin folding might differ for specific regions of chromosomes and that it is basically preserved in tumor cells in spite of the amplification of many loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amrichová J, Lukášová E, Kozubek S, Kozubek M (2003) Nuclear and territorial topography of chromosome telomeres in human lymphocytes. Exp Cell Res 289:11–26

    Article  PubMed  Google Scholar 

  • Aust DE, Willenbucher RF, Terdiman JP, Ferrell LD, Chang CG, Moore DH, Molinard J, Clark A, Baretton GB, Loehrs U, Waldman FM (2000) Chromosomal alterations in ulcerative colitis-related and sporadic colorectal cancers by comparative genomic hybridization. Hum Pathol 31:109–114

    CAS  PubMed  Google Scholar 

  • Baylin SB, Herman JG (2000) DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet 16:168–174

    CAS  PubMed  Google Scholar 

  • Birkenkamp-Demtroder K, Christensen LL, Olesen SH, Frederiksen CM, Laiho P, Aaltonen LA, Laurberg S, Sorensen FB, Hagemann R, Orntoft TF (2002) Gene expression in colorectal cancer. Cancer Res 62:4352–4363

    CAS  PubMed  Google Scholar 

  • Bomme L, Lothe RA, Bardi G, Fenger C, Kronborg O, Heim S (2001) Assessment of clonal composition of colorectal adenomas by FISH analysis of chromosomes 1, 7, 13, and 20. Int J Cancer 92:816–823

    Article  CAS  PubMed  Google Scholar 

  • Bridger JM, Bickmore WA (1998) Putting the genome on the map. Trends Genet 14:403–409

    Article  CAS  PubMed  Google Scholar 

  • Brown R, Strathedee G (2002) Epigenomics and epigenetic therapy of cancer. Trends Mol Med 8:S43–48

    Article  CAS  Google Scholar 

  • Di Leonardo A, Linke SP, Yin Y, Wahl GM (1993) Cell cycle regulation of gene amplification. Cold Spring Harbor Symp Quant Biol LVIII: 655–667

    Google Scholar 

  • Eberharter A, Becker PB (2002) Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics. EMBO Rep 3:224–229

    Article  CAS  PubMed  Google Scholar 

  • Falk M, Lukášová E, Kozubek S, Kozubek M (2002) Topography of genetic elements of X-chromosome relative to the cell nucleus and to the chromosome X territory determined for human lymphocytes. Gene 292:13–24

    Google Scholar 

  • Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767

    PubMed  Google Scholar 

  • Fearon ER, Hamilton SR, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238:193–197

    CAS  PubMed  Google Scholar 

  • Ferreira J, Paollela G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139:1597–1610

    CAS  PubMed  Google Scholar 

  • Horn PJ, Peterson CL (2002) Molecular biology. Chromatin higher order folding-wrapping up transcription. Science 297:1824–1827

    Article  CAS  PubMed  Google Scholar 

  • Jen J, Powell SM, Papadopoulos N, Smith KJ, Hamilton SR, Vogelstein B, Kinyler KW (1994) Molecular determinants of dysplasia in colorectal lesions. Cancer Res 54:5523–5526

    CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    CAS  PubMed  Google Scholar 

  • Jonczyk P, White A, Lum K, Barrett JC, Tlsty TD (1993) Amplification potential in preneoplastic and neoplastic Syrian Hamster embryo fibroblasts transformed by various carcinogenes. Cancer Res 53:3098–3102

    CAS  PubMed  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258:818–821

    CAS  PubMed  Google Scholar 

  • Koutná I, Kozubek S, Žaloudík J, Kozubek M, Lukášová E, Matula Pa, Bártová E, Skalníková M, Cafourková A, Jirsová P (2000) Topography of genetic loci in tissue samples: towards new diagnostic tool using interphase FISH and high-resolution image analysis techniques. Anal Cell Pathol 20:173–185

    PubMed  Google Scholar 

  • Kozubek M, Kozubek S, Lukášová E, Marečková A, Bártová E, Skalníková M, Jergová A (1999) High-resolution cytometry of FISH dots in interphase nuclei. Cytometry 36:279–293

    CAS  PubMed  Google Scholar 

  • Kozubek M, Kozubek S, Lukášová E, Bártová E, Skalníková M, Matula P, Matula P, Jirsová P, Cafourková A, Koutná I (2001) Combined confocal and wide-field high-resolution cytometry of fluorescence in situ hybridization-stained cells. Cytometry 45:1-12

    CAS  PubMed  Google Scholar 

  • Kozubek S, Lukášová E, Jirsová P, Koutná I, Kozubek M, Gaňová A, Bártová E, Falk M, Paseková R (2002) 3D structure of the human genome: order in randomness. Chromosoma 111:321–331

    CAS  PubMed  Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 280:547–553

    CAS  PubMed  Google Scholar 

  • Lukášová E, Kozubek S, Kozubek M, Falk M, Amrichová J (2002) The 3D structure of human chromosomes in cell nuclei. Chromosome Res 10:535–548

    Article  PubMed  Google Scholar 

  • Melcher R, Steinlein C, Feichtinger W, Muller CR, Menzel T, Luhrs H, Scheppach W, Schmid M (2000) Spectral karyotyping of the human colon cancer cell lines SW480 and SW620. Cytogenet Cell Genet 88:145–152

    Article  CAS  PubMed  Google Scholar 

  • Nakao K, Shibusawa M, Ishihara A, Yoshizawa H, Tsunoda A, Kusano M, Kurose A, Makita T, Sasaki K (2001) Genetic changes in colorectal carcinoma tumors with liver metastases analyzed by comparative genomic hybridization and DNA ploidy. Cancer 91:721–726

    Article  CAS  PubMed  Google Scholar 

  • Neves H, Ramos C, Gomez da Silva M, Parreira A, Parreira L (1999) The nuclear topography of ABL, BCR, PML and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood 93:1197–1207

    CAS  PubMed  Google Scholar 

  • Platzer P, Upender MB, Wilson K, Willis J, Luttenbaugh J, Nosrati A, Willson JK, Mack D, Ried T, Markowitz S (2002) Silence of chromosomal amplifications in colon cancer. Cancer Res 62:1134–1138

    CAS  PubMed  Google Scholar 

  • Rountree MR, Bachman KE, Herman JG, Baylin SB (2001) DNA methylation, chromatin inheritance, and cancer. Oncogene 28:3156–3165

    Article  Google Scholar 

  • Sachs RK, van den Engh G, Trask BJ, Yokota H, Hearst JE (1995) A random-walk/giant-loop model for interphase chromosomes. Proc Natl Acad Sci U S A 92:2710–2714

    Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes: polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    CAS  PubMed  Google Scholar 

  • Schul W, de Jong L, van Driel R (1998) Nuclear neighbors: the spatial and functional organization of genes and nuclear domains. J Cell Biochem 70:159–171

    Article  CAS  PubMed  Google Scholar 

  • Schwab M (1990) Oncogene amplification in neoplastic development and progression of human cancers. Crit Rev Oncogen 2:35–45

    CAS  Google Scholar 

  • Sobin LH, Wittekind Ch (eds) (2002) TNM classification of malignant tumours (6 th edition). New York, Wiley-Liss

  • Spector DL (1996) Nuclear organization and gene expression. Exp Cell Res 229:189–197

    CAS  PubMed  Google Scholar 

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP, Herman JG, Baylin SB (2002) A genomic screen for genes upregulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149

    Article  CAS  PubMed  Google Scholar 

  • Tlsty TD, Jonczyk P, White A, Sage M, Hall I, Schaefer D, Briot A, Livanos E, Roelofs H, Poulose B, Sanchez J (1993) Loss of chromosomal integrity in neoplasia. Cold Spring Harbor Quant Biol LVIII:645–654

    Google Scholar 

  • Van Driel R, Wansink DG, Van Steensel B, Grande MA, Schul W, De Jong L (1995) Nuclear domains and the nuclear matrix. Int Rev Cytol 162A:151–189

    PubMed  Google Scholar 

  • Visser AE, Eils R, Jauch A, Little G, Bakker, PJM, Cremer T, Aten JA (1998) Spatial distributions of early and late replicating chromatin in interphase chromosome territories. Exp Cell Res 243:398–407

    Article  CAS  PubMed  Google Scholar 

  • Wang T-L, Rago C, Silliman N, Ptak J, Markowitz S, Willson JKV, Parmigiani G, Kinzler KW, Vogelstein B, Valculescu VE (2002) Prevalence of somatic alterations in colorectal cancer cell genome. Proc Natl Acad Sci U S A 99:3076–3080

    Google Scholar 

  • Yokota H, van den Engh G, Hearst JE, Sachs RK, Trask BJ (1995) Evidence for the organization of chromatin in megabase pair-sized loops arranged along a random walk path in the human G0/G1 interphase nucleus. J Cell Biol 130:1239–1249

    CAS  PubMed  Google Scholar 

  • Yokota H, Singer MJ, van den Engh GJ, Trask BJ (1997) Regional differences in the compaction of chromatin in human G0/G1 interphase nuclei. Chromosome Res 5:157–166

    CAS  PubMed  Google Scholar 

  • Zink D, Bornfleth H, Visser AE, Cremer C, Cremer T (1999) Organization of early and late replicating DNA in human chromosome territories. Exp Cell Res 247:176–188

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank M. Rocchi for the generous supply of BAC clones. The work was supported by the Ministry of Health of the Czech Republic (NC6987-3), Ministry of Education (ME565), the Academy of Sciences of the Czech Republic (A1065203, A5004306) and the Grant Agency of the Czech Republic (GA202/02/0804, GA202/01/0197).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kozubek.

Additional information

Communicated by T. Hassold

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukášová, E., Kozubek, S., Falk, M. et al. Topography of genetic loci in the nuclei of cells of colorectal carcinoma and adjacent tissue of colonic epithelium. Chromosoma 112, 221–230 (2004). https://doi.org/10.1007/s00412-003-0263-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-003-0263-3

Keywords

Navigation