Skip to main content
Log in

Bone marrow dosimetry for mice: exposure from bone-seeking 89,90Sr

  • Original Article
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

Studies of radiobiological effects in murine rodents exposed to internal radiation in the wild or in laboratory experiments require dosimetric support. The main problem of bone marrow (BM) dosimetry for bone-seeking β-emitters is dosimetric modeling, because the bone is a heterogeneous structure with complex microarchitecture. To date, there are several approaches to calculating the absorbed dose in BM, which mostly use rough geometric approximations. Recently, in the framework of studies of people exposed to 90Sr in the Urals, a new approach (SPSD) has been developed. The aim of the current study was to test for the first time the possibility of extension of the SPSD approach elaborated for humans to mice. For this, computational phantoms of femur bones of laboratory animals (C57BL/6, C57BL/6 J, BALB/c, BALB/cJ) aged 5–8 weeks (growing) and > 8 weeks (adults) were created. The dose factors DFSr-90(BM ← TBV + CBV) to convert the Sr isotope activity concentration in a bone tissue into units of dose rate absorbed in the bone marrow were 1.75 ± 0.42 and 2.57 ± 0.93 μGy day−1 per Bq g−1 for growing and adult animals, respectively, while corresponding values for DFSr-89(BM ← TBV + CBV) were 1.08 ± 0.27 and 1.66 ± 0.67 μGy day−1 per Bq g−1, respectively. These results are about 2.5 times lower than skeleton-average DFs calculated assuming homogenous bone, where source and target coincide. The results of the present study demonstrate the possibility of application of the SPSD approach elaborated for humans to non-human mammals. It is concluded that the study demonstrates the feasibility and appropriateness of application of the SPSD approach elaborated for humans to non-human mammals. This approach opens up new prospects for studying the radiobiological consequences of red bone marrow exposure for both laboratory and wildlife mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data available within the article or its supplementary materials.

References

  • Askbrant S, Melin J, Sandalls J, Rauret G, Vallejo R, Hinton T, Cremers A, Vandecastelle C, Lewyckyj N, Ivanov YA, Firsakova SK, Arkhipov NP, Alexakhin RM (1996) Mobility of radionuclides in undisturbed and cultivated soils in Ukraine, Belarus and Russia six years after the Chernobyl fallout. J Environ Radioact 31(3):287–312. https://doi.org/10.1016/0265-931X(95)00054-E

    Article  Google Scholar 

  • Avramenko MI, Averin AN, Drozhko EG, Glagolenko YuV, Loboiko BG, Mokrov YuG, Romanov GN, Kotov ES, Filin FP (1997) Accident of 1957 evaluation of explosion parameters and analysis of characteristics of radiation contamination of the territory. Issues of Radiats Safety 3:18–28 (in Russian)

  • Bagi CM, Berryman E, Moalli MR (2011) Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med 61(1):76–85

    Google Scholar 

  • Bitar A, Lisbona A, Thedrez P, Sai Maurel C, Le Forestier D, Barbet J, Bardiès M (2007) A voxel-based mouse for internal dose calculations using Monte Carlo simulations (MCNP). Phys Med Biol 52:1013–1025. https://doi.org/10.1088/0031-9155/52/4/010

    Article  Google Scholar 

  • Boggs DR (1984) The total marrow mass of the mouse: a simplified method of measurement. Am J Hematol 16(3):277–286. https://doi.org/10.1002/ajh.2830160309

    Article  MathSciNet  Google Scholar 

  • Bolch WE, Bouchet LG, Robertson JS, Wessels BW, Siegel JA, Howell RW, Erdi AK, Aydogan B, Costes S, Watson EE, Brill AB, Charkes ND, Fisher DR, Hays MT, Thomas SR (1999) MIRD pamphlet No. 17: the dosimetry of nonuniform activity distributions–radionuclide S values at the voxel level medical internal radiation dose committee. J Nucl Med 40(1):11S-36S

    Google Scholar 

  • Bolch WE, Eckerman KF, Sgouros G, Thomas SR (2009) MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry–standardization of nomenclature. J Nucl Med 50(3):477–484. https://doi.org/10.2967/jnumed.108.056036

    Article  Google Scholar 

  • Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25(7):1468–1486. https://doi.org/10.1002/jbmr.141

    Article  Google Scholar 

  • Broulík PD, Raška I, Brouliková K (2013) Prolonged overdose of all-trans retinoic acid enhances bone sensitivity in castrated mice. Nutrition 29(9):1166–1169. https://doi.org/10.1016/j.nut.2013.03.011

    Article  Google Scholar 

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Hosseini A (2016) A new version of the ERICA tool to facilitate impact assessments of radioactivity on wild plants and animals. J Environ Radioact 153:141–148. https://doi.org/10.1016/j.jenvrad.2015.12.011

    Article  Google Scholar 

  • Cao JJ, Sun L, Gao H (2010) Diet-induced obesity alters bone remodeling leading to decreased femoral trabecular bone mass in mice. Ann N Y Acad Sci 1192:292–297. https://doi.org/10.1111/j.1749-6632.2009.05252.x

    Article  ADS  Google Scholar 

  • Chanpaisaeng K, Reyes Fernandez PC, Fleet JC (2019) Dietary calcium intake and genetics have site-specific effects on peak trabecular bone mass and microarchitecture in male mice. Bone 125:46–53. https://doi.org/10.1016/j.bone.2019.05.011

    Article  Google Scholar 

  • Chesser RK, Sugg DW, Lomakin MD, Van Den Bussche RA, Dewoody JA, Jagoe CH, Dallas CE, Whicker FW, Smith MH, Gaschak SP, Chizhevsky IG, Lyabik VV, Buntova EG, Holloman K, Baker RJ (2000) Concentrations and dose rate estimates of 134,137Cs and 90Sr in small mammals at Chornobyl. Ukraine Environ Toxicol Chem 19:305–312. https://doi.org/10.1002/etc.5620190209

    Article  Google Scholar 

  • Chiang S-S, Pan T-M (2011) Antiosteoporotic effects of lactobacillus-fermented soy skim milk on bone mineral density and the microstructure of femoral bone in ovariectomized mice. J Agric Food Chem 59(14):7734–7742. https://doi.org/10.1021/jf2013716

    Article  Google Scholar 

  • Dahl H, Eide DM, Tengs T, Duale N, Kamstra JH, Oughton DH, Olsen AK (2021) Perturbed transcriptional profiles after chronic low dose rate radiation in mice. PLoS ONE 16(8):e0256667. https://doi.org/10.1371/journal.pone.0256667

    Article  Google Scholar 

  • Degteva MO, Shagina NB, Vorobiova MI, Shishkina EA, Tolstykh EI, Akleyev AV (2016) Contemporary understanding of radioactive contamination of the Techa River in 1949–1956. Radiat Biol Radioecol 85(5):532–534 (in Russian)

    Google Scholar 

  • Degteva MO, Tolstykh EI, Shishkina EA, Sharagin PA, Zalyapin VI, Volchkova AYu, Smith MA, Napier BA (2021) Stochastic parametric skeletal dosimetry model for humans: general approach and application to active marrow exposure from bone-seeking beta-particle emitters. PLoS ONE 16(10):e0257605. https://doi.org/10.1371/journal.pone.0257605

    Article  Google Scholar 

  • Doucette CR, Horowitz MC, Berry R, MacDougald OA, Anunciado-Koza R, Koza RA, Rosen CJ (2015) A high fat diet increases bone marrow adipose tissue (MAT) but does not alter trabecular or cortical bone mass in C57BL/6J mice. J Cell Physiol 230(9):2032–2037. https://doi.org/10.1002/jcp.24954

    Article  Google Scholar 

  • Dubrovsky AM, Nyman JS, Uppuganti S, Chmiel KJ, Kimmel DB, Lane NE (2020) Bone strength/bone mass discrepancy in glucocorticoid-treated adult mice. JBMR plus. 5(3):e10443. https://doi.org/10.1002/jbm4.10443

    Article  Google Scholar 

  • Epp ER, Woodard HQ, Weiss H (1959) Energy absorption by the bone marrow of the mouse receiving whole-body irradiation with 250-Kv X-rays or Cobalt-60 Gamma rays. Radiat Res 11(2):184. https://doi.org/10.2307/3570657

    Article  ADS  Google Scholar 

  • Fesenko S (2019) Review of radiation effects in non-human species in areas affected by the Kyshtym accident. J Radiol Prot 1:R1–R17. https://doi.org/10.1088/1361-6498/aafa92

    Article  Google Scholar 

  • Gileva EA (2002) Chromosomal instability in rodents from the EURT territory: interspecies comparison. Radiats Biol Radioecol 42(6):665–668 (In Russian)

    Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22(8):1197–1207. https://doi.org/10.1359/jbmr.070507

    Article  Google Scholar 

  • ICRP (2002) Basic anatomical and physiological data for use in radiological protection reference values ICRP publication 89. Ann ICRP 32(3–4):5–265

    Google Scholar 

  • ICRP (2008). Environmental protection: the concept and use of reference animals and plants ICRP publication 108. Ann ICRP 38(4–6):1–241

  • Ilyenko AI (1974) Concentration of radioisotopes by animals and their influence on the population. Nauka Press, Moscow (in Russian)

    Google Scholar 

  • Iversen CM, McCormack ML, Powell AS, Blackwood CB, Freschet GT, Kattge J, Roumet C, Stover DB, Soudzilovskaia NA, Valverde-Barrantes OJ, van Bodegom PM, Violle C (2017) Viewpoints: a global fine-root ecology database to address belowground challenges in plant ecology. New Phytol 215:15–26. https://doi.org/10.1111/nph.14486

    Article  Google Scholar 

  • Izrael YA (2013) Atlas of the east ural and karachay radioactive trace including forecast up to 2047. IGCE Roshydromet and RAS, «Infosphere» Foundation, Moscow, 140 p (in Russian). http://downloads.igce.ru/publications/Atlas/CD_VURS/

  • Keenan MA, Stabin MG, Segars WP, Fernald MJ (2010) RADAR realistic animal model series for dose assessment. J Nucl Med 51(3):471–476. https://doi.org/10.2967/jnumed.109.070532

    Article  Google Scholar 

  • Kramer R, Cassola VF, Vieira JW, Khoury HJ, de Oliveira Lira CAB, Robson Brown K (2012) Skeletal dosimetry based on μCT images of trabecular bone: update and comparisons. Phys Med Biol 57(12):3995–4021. https://doi.org/10.1088/0031-9155/57/12/3995

    Article  Google Scholar 

  • Locatelli M, Miloudi H, Autret G, Balvay D, Desbrée A, Blanchardon E, Bertho JM (2017) RODES software for dose assessment of rats and mice contaminated with radionuclides. J Radiol Prot 37(1):214–229. https://doi.org/10.1088/1361-6498/aa58aa

    Article  Google Scholar 

  • Lyubashevsky NM, Pashnina IA, Tarasov OV (2002b) Assessment of environmental health in the vicinity of the city of Ozersk (bioindication data). EURT-45: Regional Scientific and Practical Conference, Ozersk Chelyabinsk region, 26–27 Sept 2002a. Ozersk, VRB Publisher. pp 167–187 (in Russian)

  • Lyubashevsky NM, Starichenko VI, Gileva EA, Evdokimov NG, Orekhova NA, Pashnina MA, Rasina LN, Sineva NV, Tarasov OV, Yalkovskaya LE (2002a) New data on population-genetic radioadaptation of small mammals on EURT. In proceedings of International Scientific Conference “Ecological problems of mountain territories” (June 18–20, 2002b). Yekaterinburg. pp 244–249 (in Russian)

  • Ma H, Turpeinen T, Silvennoinen M, Torvinen S, Rinnankoski-Tuikka R, Kainulainen H, Timonen J, Kujala UM, Rahkila P, Suominen H (2011) Effects of diet-induced obesity and voluntary wheel running on the microstructure of the murine distal femur. Nutr Metab (lond) 8(1):1. https://doi.org/10.1186/1743-7075-8-1

    Article  Google Scholar 

  • Malinovsky G, Yarmoshenko I, Zhukovsky M, Starichenko V, Modorov M (2013) Strontium biokinetic model for mouse-like rodent. J Environ Radioact 118:57–63. https://doi.org/10.1016/j.jenvrad.2012.11.003

    Article  Google Scholar 

  • Malinovsky GP, Yarmoshenko IV, Zhukovsky MV, Starichenko VI, Chibiryak MV (2014) Contemporary radiation doses to murine rodents inhabiting the most contaminated part of the EURT. J Environ Radioact 129:27–32. https://doi.org/10.1016/j.jenvrad.2013.11.008

    Article  Google Scholar 

  • Martín-Badosa E, Amblard D, Nuzzo S, Elmoutaouakkil A, Vico L, Peyrin F (2003a) Excised bone structures in mice: imaging at three-dimensional synchrotron radiation micro CT. Radiology 229(3):921–928. https://doi.org/10.1148/radiol.2293020558

    Article  Google Scholar 

  • Martín-Badosa E, Elmoutaouakkil A, Nuzzo S, Amblard D, Vico L, Peyrin F (2003b) A method for the automatic characterization of bone architecture in 3D mice microtomographic images. Comput Med Imaging Graph 27(6):447–458. https://doi.org/10.1016/s0895-6111(03)00031-4

    Article  Google Scholar 

  • Mikhailovskaya LN, Modorov MV, Pozolotina VN, Antonova EV (2019) Heterogeneity of soil contamination by 90Sr and its absorption by herbaceous plants in the East Ural Radioactive Trace area. Sci Total Environ 651(Pt 2):2345–2353. https://doi.org/10.1016/j.scitotenv.2018.10.119

    Article  ADS  Google Scholar 

  • Modorov MV (2014) Radiation doses and allozyme variability in the population of the northern red-backed vole (Clethrionomys rutilus) from the east Urals radioactive trace zone. Genetika 50(2):181–188 (in Russian)

    Google Scholar 

  • Molchanova I, Pozolotina V, Karavaeva E, Mikhaylovskaya L, Antonova E (2009) Radioactive inventories within the East-Ural radioactive state reserve on the Southern Urals. Radioprotection 44(5):747–757. https://doi.org/10.1051/radiopro/20095136

    Article  Google Scholar 

  • Molchanova I, Mikhailovskaya L, Antonov K, Pozolotina V, Antonova E (2014) Current assessment of integrated content of long-lived radionuclides in soils of the head part of the East Ural radioactive trace. J Environ Radioact 138:238–248. https://doi.org/10.1016/j.jenvrad.2014.09.004

    Article  Google Scholar 

  • Olenev GV, Pasichnik NM (2003) Ecological analysis of spleen hypertrophy in cyclomorphic rodents taking into account the type of ontogeny. Russ J Ecol 34:188–197

    Article  Google Scholar 

  • Orekhova NA, Modorov MV (2017) East Urals radioactive trace: dose-dependent functional-metabolic effects in the myocardium of the pygmy wood mouse (Apodemus uralensis) taking into account population size. J Environ Radioact 175–176:15–24. https://doi.org/10.1016/j.jenvrad.2017.04.005

    Article  Google Scholar 

  • Orekhova NA, Modorov MV, Davydova YA (2019) Structural-functional modifications of the liver to chronic radioactive exposure in pygmy wood mouse (Apodemus uralensis) within the East-Urals radioactive trace. J Environ Radioact 199–200:25–38. https://doi.org/10.1016/j.jenvrad.2019.01.002

    Article  Google Scholar 

  • Papageorgiou M, Föger-Samwald U, Wahl K, Kerschan-Schindl K, Pietschmann P (2020) Age-and strain-related differences in bone microstructure and body composition during development in inbred male mouse strains. Calcif Tissue Int 106:431–443. https://doi.org/10.1007/s00223-019-00652-8

    Article  Google Scholar 

  • Povinec PP, Aarkrog A, Buesseler KO, Delfanti R, Hirose K, Hong G-H, Ito T, Livingston HD, Nies H, Noshkin VE, Shima S, Togawa O (2005) 90Sr, 137Cs and 239,240Pu concentration surface water time series in the Pacific and Indian Oceans–WOMARS results. J Environ Radioact 81:63–87. https://doi.org/10.1016/j.jenvrad.2004.12.003

    Article  Google Scholar 

  • Shaposhnikov VL (1979) Distribution of the bone marrow cells in the skeleton of mice. Biull Eksp Biol Med 87(5):483–485 (in Russian)

    Article  Google Scholar 

  • Sharagin PA, Shishkina EA, Tolstykh EI, Volchkova AY, Smith MA, Degteva MO (2018) Segmentation of hematopoietic sites of human skeleton for calculations of dose to active marrow exposed to bone-seeking radionuclides. Proceedings of the RAD 2018 Conference; 2018; Macedonia, Ohrid. pp. 154–158. doi: https://doi.org/10.21175/RadProc.2018.33

  • Sharagin PA, Tolstykh EI, Shishkina EA, Napier BA, Smith MA, Degteva MO (2021) Dosimetric modeling of bone for bone-seeking beta-emitting radionuclides: size parameters and segmentation. Proceedings of the international scientific conference “Modern problems of radiobiology—2021, Minsk, 2021”. Publisher: Information and Computing Center of the Ministry of Finance of the Republic of Belarus, Minsk, pp. 200–204 (in Russian)

  • Shishkina EA, Zalyapin VI, Timofeev YuS, Degteva MO, Smith MA, Napier BA (2018) Parametric stochastic model of bone structures to be used in computational dosimetric phantoms of human skeleton. RAD Assoc J 3(2):133–137. https://doi.org/10.21175/RadJ.2018.02.022

    Article  Google Scholar 

  • Shishkina EA, Timofeev YS, Volchkova AY, Sharagin PA, Zalyapin VI, Degteva MO, Smith MA, Napier BA (2020) Trabecula: a random generator of computational phantoms for bone marrow dosimetry. Health Phys 118(1):53–59. https://doi.org/10.1097/HP.0000000000001127

    Article  Google Scholar 

  • Shishkina EA, Sharagin PA, Volchkova AYu (2021a) Analytical description of dose forming in bone marrow from 90Sr incorporated in calcified tissues. J Radiat Safety Issues 103(3):72–82 (in Russian)

    Google Scholar 

  • Shishkina EA, Starichenko VI, Valeeva ER, Lyubashevsky NM, Modorov MV (2021b) Assessment of herb field mouse (Sylvaemus uralensis) migration in the area of the east Urals radioactive trace using measurements of bone-seeking 90Sr. J Environ Radioact 237:106663. https://doi.org/10.1016/j.jenvrad.2021.106663

    Article  Google Scholar 

  • Soppera N, Bossant M, Dupont E (2014) JANIS 4: an improved version of the NEA Java– based nuclear data information system. Nucl Data Sheets 120:294–296. https://doi.org/10.1016/j.nds.2014.07.071

    Article  ADS  Google Scholar 

  • Stabin MG, Peterson TE, Holburn GE, Emmons MA (2006) Voxel-based mouse and rat models for internal dose calculations. J Nucl Med 47(4):655–659

    Google Scholar 

  • Starichenko VI (2004) Accumulation of 90Sr in the bone tissue of the northern mole vole, living in the head part of the East Ural Radioactive Trace. Radiats Biol Radioecol 44(3):346–350 (in Russian)

    Google Scholar 

  • Starichenko VI, Lyubashevskiy NM, Modorov MV, Chibiryak MV (2014) Skeletal 90Sr as a marker of migration activity of murine rodents in the zone of the eastern Ural radioactive trace. Russ J Ecol 45(3):231–241. https://doi.org/10.1134/S1067413614030126

    Article  Google Scholar 

  • Taketa ST, Carsten AL, Cohn SH, Atkins HL, Bond VP (1970) Active bone marrow distribution in the monkey. Life Sci 9(3):169–174. https://doi.org/10.1016/0024-3205(70)90310-3

    Article  Google Scholar 

  • Tamasi JA, Vasilov A, Shimizu E, Benton N, Johnson J, Bitel CL, Morrison N, Partridge NC (2013) Monocyte chemoattractant protein-1 is a mediator of the anabolic action of parathyroid hormone on bone. J Bone Miner Res 28(9):1975–1986. https://doi.org/10.1002/jbmr.1933

    Article  Google Scholar 

  • Tarasov OV (2000) Radioecology of terrestrial vertebrates of the East Ural radiation reserve. PhD theses, Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences (IPAE) (in Russian)

  • Tolstykh, EI, Sharagin PA, Shishkina EA, Degteva MO, Napier BA, Smith MA (2021) Dosimetric modeling of red bone marrow exposure from 89,90SR: resolving age-dependent trabecular bone parameters. Proceedings of the international scientific conference “Contemporary issues of radiobiology—2021 (September23–24, 2021, Gomel)”. Publisher: IVC Minfina, Minsk, pp. 176–179 (in Russian)

  • Turner CH, Hsieh YF, Müller R, Bouxsein ML, Baylink DJ, Rosen CJ, Grynpas MD, Donahue LR, Beamer WG (2000) Genetic regulation of cortical and trabecular bone strength and microstructure in inbred strains of mice. J Bone Miner Res 15(6):1126–1131. https://doi.org/10.1359/jbmr.2000.15.6.1126

    Article  Google Scholar 

  • Verdelis K, Lukashova L, Atti E, Mayer-Kuckuk P, Peterson MG, Tetradis S, Boskey AL, van der Meulen MC (2011) MicroCT morphometry analysis of mouse cancellous bone: intra- and inter-system reproducibility. Bone 49(3):580–587. https://doi.org/10.1016/j.bone.2011.05.013

    Article  Google Scholar 

  • Voide R, van Lenthe GH, Müller R (2008) Bone morphometry strongly predicts cortical bone stiffness and strength, but not toughness, in inbred mouse models of high and low bone mass. J Bone Miner Res 23(8):1194–1203. https://doi.org/10.1359/jbmr.080311

    Article  Google Scholar 

  • Volchkova AY, Sharagin PA, Shishkina EA (2022) Internal bone marrow dosimetry: the effect of the exposure due to 90Sr incorporated in the adjacent bone segments. Bulletin of the south ural state university ser mathematical modelling, programming & computer Software (Bulletin SUSU MMCS) 15 (4): 44-58. https://doi.org/10.14529/mmp220404

  • Wu Y, Liu J, Guo H, Luo Q, Yu Z, Liao E, Zu X (2013) Establishment of OPG transgenic mice and the effect of OPG on bone microarchitecture. Int J Endocrinol 2013:125932. https://doi.org/10.1155/2013/125932

    Article  Google Scholar 

  • Xiang A, Kanematsu M, Kumar S, Yamashita D, Kaise T, Kikkawa H, Asano S, Kinoshita M (2007) Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone 40(5):1231–1237. https://doi.org/10.1016/j.bone.2007.01.010

    Article  Google Scholar 

  • Zalyapin VI, Timofeev YuS, Shishkina EA (2018) A parametric stochastic model of bone geometry. Bulletin of the South Ural State University Ser Mathematical Modelling, Programming & Computer Software (Bulletin SUSU MMCS) 11(2):44–57. https://doi.org/10.14529/mmp180204

  • Zankl M, Becker J, Lee C, Bolch WE, Yeom YS, Kim CH (2018) Computational phantoms, ICRP/ICRU, and further developments. Ann ICRP 47(3–4):35–44. https://doi.org/10.1177/0146645318756229

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose. The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Elena Shishkina and Alina Shuiskaya wrote the main manuscript text. Elena Shishkina provided conceptualization and supervision. Alina Shuiskaya performed investigations. Pavel Sharagin performed calculations and prepared Fig. 1. All authors reviewed the manuscript.

Corresponding author

Correspondence to Elena Shishkina.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 31 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shishkina, E., Shuiskaya, A. & Sharagin, P. Bone marrow dosimetry for mice: exposure from bone-seeking 89,90Sr. Radiat Environ Biophys 62, 131–142 (2023). https://doi.org/10.1007/s00411-022-01010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-022-01010-3

Keywords

Navigation