Radiation and Environmental Biophysics

, Volume 52, Issue 4, pp 505–511 | Cite as

Estimating the biological half-life for radionuclides in homoeothermic vertebrates: a simplified allometric approach

  • N. A. Beresford
  • J. Vives i Batlle
Original Paper


The application of allometric, or mass-dependent, relationships within radioecology has increased with the evolution of models to predict the exposure of organisms other than man. Allometry presents a method of addressing the lack of empirical data on radionuclide transfer and metabolism for the many radionuclide–species combinations which may need to be considered. However, sufficient data across a range of species with different masses are required to establish allometric relationships and this is not always available. Here, an alternative allometric approach to predict the biological half-life of radionuclides in homoeothermic vertebrates which does not require such data is derived. Biological half-life values are predicted for four radionuclides and compared to available data for a range of species. All predictions were within a factor of five of the observed values when the model was parameterised appropriate to the feeding strategy of each species. This is an encouraging level of agreement given that the allometric models are intended to provide broad approximations rather than exact values. However, reasons why some radionuclides deviate from what would be anticipated from Kleiber’s law need to be determined to allow a more complete exploitation of the potential of allometric extrapolation within radioecological models.


Allometry Biological half-life Metabolic rate Radionuclide Environmental assessment 



This work was funded under the EC EURATOM Seventh Framework Network of Excellence STrategy for Allied Radioecology ( and a UK Natural Environment Research Council funded Knowledge Exchange project (


  1. Agutter PS, Tuszynski JA (2011) Analytic theories of allometric scaling. J Exp Biol 214:1055–1062CrossRefGoogle Scholar
  2. Avila R, Beresford NA, Agüero A, Broed R, Brown J, Iospje M, Robles B, Suañez A (2004) Study of the uncertainty in estimation of the exposure of non-human biota to ionizing. J Radiol Prot 24:A105–A122CrossRefGoogle Scholar
  3. Barnett CL, Beresford NA, Walker LA, Baxter M, Wells C, Copplestone D (2013) Element and radionuclide concentrations in representative species of the ICRP’s reference animals and plants and associated soils from a forest in north-west England. NERC-Environmental Information Data Centre. doi: 10.5285/e40b53d4-6699-4557-bd55-10d196ece9ea
  4. Battiston GA, Degetto S, Gerbasi R, Sbrignadello G, Parigi-Bini R, Xiccato G, Cinetto M (1991) Transfer of Chernobyl fallout radionuclides from feed to growing rabbits: cesium-137 balance. Sci Total Environ 105:1–12CrossRefGoogle Scholar
  5. Beresford NA, Broadley MR, Howard BJ, Barnett C, White PJ (2004) Estimating radionuclide transfer to wild species - data requirements and availability for terrestrial ecosystems. J Radiol Prot 24:A89–A103CrossRefGoogle Scholar
  6. Beresford NA, Barnett CL, Brown J, Cheng J–J, Copplestone D, Filistovic V, Hosseini A, Howard BJ, Jones SR, Kamboj S, Kryshev A, Nedveckaite T, Olyslaegers G, Saxén R, Sazykina T, Vives i Batlle J, Vives-Lynch S, Yankovich T, Yu C (2008) Inter-comparison of models to estimate radionuclide activity concentrations in non-human biota. Radiat Environ Biophys 47:491–514CrossRefGoogle Scholar
  7. Brown J, Børretzen P, Dowdall M, Sazykina T, Kryshev I (2004) The derivation of transfer parameters in the assessment of radiological impacts on Arctic marine biota. Arctic 57:279–289Google Scholar
  8. Coughtrey PJ, Jackson D, Thorne M (1983) Radionuclide distribution and transport in terrestrial and aquatic ecosystems a critical review of data, vol 3. AA Balkema, RotterdamGoogle Scholar
  9. Gaare E, Staaland H (1994) Pathways of fallout radiocaesium via reindeer to man. In: Dahlgaard H (ed) Nordic radioecology—the transfer of radionuclides through Nordic ecosystems to man. Elsevier, Amsterdam, pp 303–334CrossRefGoogle Scholar
  10. Galeriu D, Beresford NA, Takeda H, Melintescu A, Crout NMJ (2003) Towards a model for the dynamic transfer of tritium and carbon in mammals. Radiat Prot Dosimetry 105:387–390CrossRefGoogle Scholar
  11. Higley KA (2010) Estimating transfer parameters in the absence of data. Radiat Environ Biophys 49:645–656CrossRefGoogle Scholar
  12. Higley KA, Bytwerk DP (2007) Generic approaches to transfer. J Environ Radioact 98:4–23CrossRefGoogle Scholar
  13. Higley KA, Domotor SL, Antonio EJ (2003) A kinetic-allometric approach to predicting tissue radionuclide concentrations for biota. J Environ Radioact 66:61–74CrossRefGoogle Scholar
  14. Hoppeler H, Weibel ER (2005) Editorial Scaling functions to body size: theories and facts. J Exp Biol 208:1573–1574CrossRefGoogle Scholar
  15. International Atomic Energy Agency (IAEA) (1994) Handbook of transfer parameter values for the prediction of radionuclide transfer in temperate environments. Technical report series 364. International Atomic Energy Agency, ViennaGoogle Scholar
  16. International Atomic Energy Agency (IAEA) (2010) Handbook of parameter values for the prediction of radionuclide transfer in terrestrial and freshwater environments. Technical reports series no 472. International Atomic Energy Agency, ViennaGoogle Scholar
  17. International Atomic Energy Agency (IAEA) (in press) Handbook of parameter values for the prediction of radionuclide transfer to wildlife. Technical report series. International Atomic Energy Agency, ViennaGoogle Scholar
  18. International Commission on Radiological Protection (ICRP) (1979) Limits for intakes of radionuclides by workers. ICRP publication 30 (Part 1). Ann ICRP 2(3–4).
  19. International Commission on Radiological Protection (ICRP) (1981) Limits for intakes of radionuclides by workers. ICRP publication 30 (Part 3). Ann ICRP 6(2–3).
  20. International Commission on Radiological Protection (ICRP) (1988) Limits for intakes of radionuclides by workers: an addendum. ICRP publication 30 (Part 4). Ann ICRP 19(4).
  21. International Commission on Radiological Protection (ICRP) (2006) Human alimentary tract model for radiological protection. ICRP publication 100. Ann ICRP 36(1–2).
  22. Isaac NJB, Carbone C (2010) Why are metabolic scaling exponents so controversial? Quantifying variance and testing hypotheses. Ecol Lett 13:728–735CrossRefGoogle Scholar
  23. Johansen MP, Barnett CL, Beresford NA, Brown JE, Černe M, Howard BJ, Kamboj S, Keum D-K, Smodiš B, Twining JR, Vandenhove H, Vives i Batlle J, Wood MD, Yu C (2012) Assessing doses to terrestrial wildlife at a radioactive waste disposal site: inter-comparison of modelling approaches. Sci Total Environ 427–428:238–246CrossRefGoogle Scholar
  24. Kitchings T, DiGregorio D, Van Voris P (1976) A review of the ecological parameters of radionuclide turnover in vertebrate food chains. In: Cushing CE, Cutshall NH, Fraley LF, French NR, Murphy PG, Sharitz RR, Trabalka JR, Turner FR, Whicker FW, Wolfe DA (eds) Radioecology and energy resources. Dowden, Hutchinson & Ross, Inc., Stroudsburg, PA, pp 304–313Google Scholar
  25. Kleiber M (1932) Body size and metabolism. Hilgardia 6:315–353Google Scholar
  26. Kleiber M (1947) Body size and metabolic rate. Physiol Rev 27:511–541Google Scholar
  27. MacDonald CR (1996) Ingestion rates and radionuclide transfer in birds and mammals on the Canadian shield. Report TR-722 COG-95-551. Atomic Energy of Canada Limited, OntarioGoogle Scholar
  28. Nagy KA (2001) Food requirements of wild animals: predictive equations for free-living mammals, reptiles and birds. Nutr Abstr Rev 71:21R–31RGoogle Scholar
  29. Nagy KA (2005) Field metabolic rate and body size. J Exp Biol 208:1627–1634CrossRefGoogle Scholar
  30. Peters RH (1983) The ecological implications of body size. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  31. Savage VM, Deeds EJ, Fontana W (2008) Sizing up allometric scaling theory. PLoS Comput Biol 4(9):e1000171MathSciNetCrossRefGoogle Scholar
  32. Sazykina TG (2000) ECOMOD—an ecological approach to radioecological modelling. J Environ Radioact 50:207–220CrossRefGoogle Scholar
  33. Sheppard SC (2001) Toxicants in the environment: bringing radioecology and ecotoxicology together. In: Bréchignac F, Howard BJ (eds) Radioactive pollutants impact on the environment. EDP Sciences, France, pp 63–74Google Scholar
  34. Stara JF, Nelson NS, Dellarosa RJ, Bustad LK (1971) Comparative metabolism of radionuclides in mammals: a review. Health Phys 20:113–137CrossRefGoogle Scholar
  35. United States Department of Energy (USDOE) (2002) A graded approach for evaluating radiation doses to aquatic and terrestrial biota. Technical standard DOE-STD-1153-2002. United States Department of Energy, Washington, DCGoogle Scholar
  36. Vives i Batlle J, Wilson RC, McDonald P (2007) Allometric methodology for the calculation of biokinetic parameters for marine biota. Sci Total Environ 388:256–269CrossRefGoogle Scholar
  37. Vives i Batlle J, Wilson RC, Watts SJ, McDonald P, Craze A (2009) Derivation of allometric relationships for radionuclides in marine phyla. Radioprotection 44:7–52CrossRefGoogle Scholar
  38. West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126CrossRefGoogle Scholar
  39. Whicker FW, Schultz V (1982) Radioecology: nuclear energy and the environment, vol II. CRC Press, Boca Raton, FLGoogle Scholar
  40. Yankovich TL, Beresford NA, Wood M, Aono T, Andersson P, Barnett CL, Bennett P, Brown J, Fesenko S, Hosseini A, Howard BJ, Johansen M, Phaneuf M, Tagami K, Takata H, Twining J, Uchida S (2010) Whole-body to tissue concentration ratios for use in biota dose assessments for animals. Radiat Environ Biophys 49:549–565CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.NERC Centre for Ecology and HydrologyLancaster Environment CentreLancasterUK
  2. 2.Belgian Nuclear Research CentreMolBelgium

Personalised recommendations