Skip to main content
Log in

Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

GATE/GEANT is a Monte Carlo code dedicated to nuclear medicine that allows calculation of the dose to organs of voxel phantoms. On the other hand, MIRD is a well-developed system for estimation of the dose to human organs. In this study, results obtained from GATE/GEANT using Snyder phantom are compared to published MIRD data. For this, the mathematical Snyder phantom was discretized and converted to a digital phantom of 100 × 200 × 360 voxels. The activity was considered uniformly distributed within kidneys, liver, lungs, pancreas, spleen, and adrenals. The GATE/GEANT Monte Carlo code was used to calculate the dose to the organs of the phantom from mono-energetic photons of 10, 15, 20, 30, 50, 100, 200, 500, and 1000 keV. The dose was converted into specific absorbed fraction (SAF) and the results were compared to the corresponding published MIRD data. On average, there was a good correlation (r 2>0.99) between the two series of data. However, the GATE/GEANT data were on average −0.16 ± 6.22% lower than the corresponding MIRD data for self-absorption. Self-absorption in the lungs was considerably higher in the MIRD compared to the GATE/GEANT data, for photon energies of 10–20 keV. As for cross-irradiation to other organs, the GATE/GEANT data were on average +1.5 ± 8.1% higher than the MIRD data, for photon energies of 50–1000 keV. For photon energies of 10–30 keV, the relative difference was +7.5 ± 67%. It turned out that the agreement between the GATE/GEANT and the MIRD data depended upon absolute SAF values and photon energy. For 10–30 keV photons, where the absolute SAF values were small, the uncertainty was high and the effect of cross-section prominent, and there was no agreement between the GATE/GEANT results and the MIRD data. However, for photons of 50–1,000 keV, the bias was negligible and the agreement was acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akabani G, Hawkins WG, Eckblade MB, Leichner PK (1997) Patient-specific dosimetry using quantitative spect imaging and three-dimensional discrete fourier transform convolution. J Nucl Med 38(2):308–314

    Google Scholar 

  • Blaickner M, Kindl P (2008) Diversification of existing reference phantoms in nuclear medicine: calculation of specific absorbed fractions for 21 mathematical phantoms and validation through dose estimates resulting from the administration of 18f-fdg. Cancer Biother Radiopharm 23(6):767–782

    Article  Google Scholar 

  • Bland JM, Altman DG (2010) Statistical methods for assessing agreement between two methods of clinical measurement. Int J Nurs Stud 47(8):931–936

    Article  Google Scholar 

  • Bolch W, Lee C, Wayson M, Johnson P (2010) Hybrid computational phantoms for medical dose reconstruction. Radiat Environ Bioph 49(2):155–168

    Article  Google Scholar 

  • Bouchet LG, Bolch WE, Weber DA, Atkins HL, Poston JWS (1999) Mird pamphlet no. 15: radionuclide s values in a revised dosimetric model of the adult head and brain. Medical internal radiation dose. J Nucl Med 40(3):62S–101S

    Google Scholar 

  • Bouchet LG, Bolch WE, Blanco HP, Wessels BW, Siegel JA, Rajon DA, Clairand I, Sgouros G (2003) Mird pamphlet no. 19: absorbed fractions and radionuclide s values for six age-dependent multiregion models of the kidney. J Nucl Med 44(7):1113–1147

    Google Scholar 

  • Caon M (2004) Voxel-based computational models of real human anatomy: a review. Radiat Environ Bioph 42(4):229–235

    Article  Google Scholar 

  • Chao T-C, Xu XG (2004) S-values calculated from a tomographic head/brain model for brain imaging. Phys Med Biol 49(21):4971–4984

    Article  Google Scholar 

  • Chiavassa S, Manuel B, Françoise G-V, Damien B, Jean-Rene J, Didier F, Isabelle A-L (2005) Oedipe: a personalized dosimetric tool associating voxel-based models with mcnpx. Cancer Biother Radiopharm 20(3):325–332

    Article  Google Scholar 

  • Dewaraja K, Wilderman SJ, Ljungberg M, Kora KF, Zasadny K, Kaminiski MS (2005) Accurate dosimetry in 131I radionuclide therapy using patient-specific 3-dimensional methods for spect reconstruction and absorbed dose calculation. J Nucl Med 46(5):840–849

    Google Scholar 

  • Ferrari P, Gualdrini G (2007) Mcnpx internal dosimetry studies based on the norman-05 voxel model. Radiat Prot Dosim 127(1–4):209–213

    Article  Google Scholar 

  • Franquiz JM, Chigurupati S, Kandagatla K (2003) Beta voxel s values for internal emitter dosimetry. Med Phys 30(6):1030–1032

    Article  Google Scholar 

  • Furhang EE, Chui C-S, Sgouros G (1996) A monte carlo approach to patient-specific dosimetry. Med Phys 23(9):1523–1529

    Article  Google Scholar 

  • Furhang EE, Chui CS, Kolbert KS, Larson SM, Sgouros G (1997) Implementation of a monte carlo dosimetry method for patient-specific internal emitter therapy. Med Phys 24(7):1163–1172

    Article  Google Scholar 

  • Hadid L, Desbree A, Schlattl H, Franck D, Blanchardon E, Zankl M (2010) Application of the icrp/icru reference computational phantoms to internal dosimetry: calculation of specific absorbed fractions of energy for photons and electrons. Phys Med Biol 55(13):3631–3641

    Article  Google Scholar 

  • Howell RW, Wessels BW, Loevinger R, Watson EE, Bolch WE, Brill AB, Charkes ND, Fisher DR, Hays MT, Robertson JS, Siegel JA, Thomas SR (1999) The mird perspective 1999. Medical internal radiation dose committee. J Nucl Med 40(1):3S–10S

    ADS  Google Scholar 

  • Jan S, Santin G, Strul D, Staelens S, Assie K, Autret D, Barbier R, Bardies M, Bloomfield P, Brasse D, Avner S, Breton V, Bruyndonckx P, Buvat I, Chatziioannou AF, Choi Y, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Chung YH, Guez D, Honore P-F, Kerhoas-Cavata S, Groiselle CJ, Kohli V, Koole M, Mkrieguer Laan DJD, Kirov AS, Largeron G, Lartizien C, Lazaro D, Maas MC, Lamare F, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Maigne L, Rannou FR, Schaart MRDR, Schmidtlein CR, Pietrzyk U, Simon L, Song TY, Vieira J-M, Visvikis D, Walle RVD, Ewieers Morel C (2004) Gate:a simulation toolkit for pet and spect. Phys Med Biol 49(19):4543–4561

    Article  Google Scholar 

  • Jan S, Santin G, Strul D, Staelens S, Assié K, Autret D, Avner S, Barbier R, Bardiès M, Bloomfield P M, Brasse D, Breton V, Bruyndonckx P, Buvat I, Chatziioannou A F, Choi Y, Chung Y H, Comtat C, Donnarieix D, Ferrer L, Glick SJ, Groiselle CJ, Guez D, Honore P-F, Kerhoas-Cavata S, Kirov AS, Kohli V, Koole M, Krieguer M, Laan DJVD, Lamare F, Largeron G, Lartizien C, Lazaro D, Maas MC, Maigne L, Mayet F, Melot F, Merheb C, Pennacchio E, Perez J, Pietrzyk U, Rannou FR, Rey M, Schaart DR, Schmidtlein CR, Simon L, Song TY, Vieira J-M, Visvikis D, Walle RVD, Wieërs E, Morel C (2008). Gate4.0.0 users guide. OpenGATE Collaboration

  • Kolbert KS, Sgouros G, Scott AM, Bronstein JE, Malane RA, Zhang J, Kalaigian H, Mcnamara S, Schwartz L, Larson SM (1997) Implementation and evaluation of patient-specific three-dimensional internal dosimetry. J Nucl Med 38(2):301–308

    Google Scholar 

  • Larsson E, Jönsson B-A, Jönsson L, Ljungberg M, Strand S-E (2005) Dosimetry calculations on a tissue level by using the mcnp4c2 monte carlo code. Cancer Biother Radiopharm 20(1):85–91

    Article  Google Scholar 

  • Ljungberg M, Sjogreen K, Liu X, Frey E, Dewaraja Y, Strand S-E (2002) A 3-dimensional absorbed dose calculation method based on quantitative spect for radionuclide therapy: evaluation for (131)i using monte carlo simulation. J Nucl Med 43(8):1101–1109

    Google Scholar 

  • Ludovic F, Nicolas C, Abdalkader B, Albert L, Manuel B (2007) Implementing dosimetry in gate: dose-point kernel validation with Geant4 4.8.1. Cancer Biother Radiopharm 22(1):125–129

    Article  Google Scholar 

  • Lyra M, Phinou P (2000) Internal doslmetry in nuclear medicine: a summary of its development, applications and current limitations. RSO Magazine 5(2):17–30

    Google Scholar 

  • Mcmaster WH, Del Grande NK, Mallett JH, Hubbell JH (1969) Compilation of x-ray cross sections, Ucrl-50174, sec ii, rev i, University of California. Livermore, Lawrence Radiation Laboratory, 261 p

    Google Scholar 

  • Plechaty EF, Terrall JR (1968) An integrated system for production of neutronics and photonics calculational constants. Volume vi. Photon cross sections 1 kev to 100 mev. UNCL. Orig. Receipt Date: 31-DEC-69, Other Information

    Google Scholar 

  • Poston JW (1976) Effects of body and organ size on absorbed dose: There is no standard patient. Symposium on radiopharmaceutical dosimetry, Oak Ridge. TN, USA

    Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007). Numerical recipes 3rd edn:the art of scientific computing New York, Cambridge University Press

  • Saito K, Wittmann A, Koga S, Ida Y, Kamei T, Funabiki J, Zankl M (2001) Construction of a computed tomographic phantom for a japanese male adult and dose calculation system. Radiat Environ Bioph 40(1):69–76

    Article  Google Scholar 

  • Salvat F, Fernández-Varea JM, Sempau J, Mazurier J (1999) Practical aspects of monte carlo simulation of charged particle transport: mixed algorithms and variance reduction techniques. Radiat Environ Biophys 38(1):15–22

    Article  Google Scholar 

  • Santin G, Staelens S, Taschereau R, Descourt P, Schmidtlein CR, Simon L, Visvikis D, Jan S, Buvat I (2007) Evolution of the gate project: new results and developments. Nucl Phys B (Proc Suppl) 172:101–103

    Article  ADS  Google Scholar 

  • Sgouros G (2005) Dosimetry of internal emitters. J Nucl Med 46(1):18s–27s

    Google Scholar 

  • Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, Robbins RJ, Larson SM (2004) Patient-specific dosimetry for 131i thyroid cancer therapy using 124i pet and 3-dimensional–internal dosimetry (3d–id) software. J Nucl Med 45(8):1366–1372

    Google Scholar 

  • Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, Robertson JS, Howell RW, Wessels BW, Fisher DR, Weber DA, Brill AB (1999) Mird pamphlet no. 16: techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 40(2):37S–61S

    Google Scholar 

  • Smith T, Petoussi-Henss N, Zankl M (2000) Comparison of internal radiation doses estimated by mird and voxel techniques for a “family” of phantoms. Eur J Nucl Med Mol Imaging 27(9):1387–1398

    Article  Google Scholar 

  • Snyder WS, Fisher HL, Ford MR, Warner GG (1969) Estimates of absorbed fractions for monoenergetic photon sources uniformly distributed in various organs of a heterogeneous phantom. J Nucl Med 3(Suppl):7–52

    Google Scholar 

  • Snyder W, Ford M, Warner G, Watson S (1975) S, absorbed dose per unit cumulated activity for selected radionuclides and organs. Mird pamphlet no. 11. Society of Nuclear Medicine, New York, NY, USA

    Google Scholar 

  • Stabin MG (1996) Mirdose: personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 37(3):538–546

    Google Scholar 

  • Stabin MG (2003) Developments in the internal dosimetry of radiopharmaceuticals. Radiat Prot Dosim 105(1–4):575–580

    Article  Google Scholar 

  • Stabin MG (2008) Update: the case for patient-specific dosimetry in radionuclide therapy. Cancer Biother Radiopharm 23(3):273–284

    Article  Google Scholar 

  • Stabin MG, Sparks RB, Crowe E (2005) Olinda/exm: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med 46(6):1023–1027

    ADS  Google Scholar 

  • Taschereau R, Chatziioannou AF (2005) Fdg-pet image-based dose distribution in a realistic mouse phantom from monte carlo simulations. In: IEEE Nucl Sci Symp (Conf Rec), 23–29 Oct. 2005. 1633–36

    Google Scholar 

  • Taschereau R, Chatziioannou AF (2007) Monte carlo simulations of absorbed dose in a mouse phantom from 18-fluorine compounds. Med Phys 34(3):1026–1036

    Article  Google Scholar 

  • Thiam CO, Breton V, Donnarieix D, Habib B, Maigne L (2008) Validation of a dose deposited by low-energy photons using Gate/Geant4. Phys Med Biol 53(11):3035–3039

    Article  Google Scholar 

  • Visvikis D, Bardies M, Chiavassa S, Danford C, Kirov A, Lamare F, Maigne L, Staelens S, Taschereau R (2006) Use of the gate monte carlo package for dosimetry applications. Nucl Instrum Meth A 569(2):335–340

    Article  ADS  Google Scholar 

  • Wessels BW, Syh JH, Meredith RF (2006) Overview of dosimetry for systemic targeted radionuclide therapy (start). Int J Radiat Oncol Biol Phys 66(2):S39–S45

    Article  Google Scholar 

  • Williams LE (2003) Therapeutic applications of monte carlo calculations in nuclear medicine. J Nucl Med 44(6):991

    Google Scholar 

  • Yoriyaz H, Stabin MG, Dos Santos A (2001) Monte carlo mcnp-4b-based absorbed dose distribution estimates for patient-specific dosimetry. J Nucl Med 42(4):662–669

    Google Scholar 

  • Zankl M, Petoussi-Henss N, Fill U, Regulla D (2003) The application of voxel phantoms to the internal dosimetry of radionuclides. Radiat Prot Dosim 105(1–4):539–548

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant funded by the Tarbiat Modares University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Rajabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parach, A.A., Rajabi, H. & Askari, M.A. Assessment of MIRD data for internal dosimetry using the GATE Monte Carlo code. Radiat Environ Biophys 50, 441–450 (2011). https://doi.org/10.1007/s00411-011-0370-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-011-0370-0

Keywords

Navigation