Skip to main content

Advertisement

Log in

RBE of 25 kV X-rays for the survival and induction of micronuclei in the human mammary epithelial cell line MCF-12A

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

The broad application of low energy X-rays below about 50 keV in radiation therapy and diagnostics and especially in mammography substantiates the precise determination of their relative biological effectiveness (RBE). A quality factor of 1 is stated for photons of all energies in the International Commission on Radiological Protection Recommendations. However, the RBE of low-energy X-rays compared to high-energy photons was found to be dependent on photon energy, cell line and endpoints studied, hence varying from less than one up to about four. In the present study, the human mammary epithelial cell line MCF-12A has been chosen due to the implementation of the results in the estimation of risk from mammography procedures. The RBE of 25 kV X-rays (W anode, 0.3 mm Al filter) relative to 200 kV X-rays (W anode, 0.5 mm Cu filter) was determined for clonogenic survival in the dose range 1–10 Gy and micronuclei (MN) induction in the range 0.5–3.5 Gy. The RBE for clonogenic survival was found to be significantly higher than 1 for surviving fractions in the range 0.005 < S < 0.2. The RBE decreased with increasing survival, with an RBE0.1 at 10% survival of 1.13 ± 0.03. The effectiveness of soft X-rays for MN induction was found to be 1.40 ± 0.07 for the fraction of binuclear cells (BNC) with MN and 1.44 ± 0.17 for the number of MN per BNC. In contrast, the RBE determined from the number of MN per MN-bearing BNC was found to be 1.08 ± 0.32. This indicates that the effectiveness of 25 kV X-rays results from an increase in the number of damaged cells, which, however, do not have higher number of MN per cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ICRP Publication 60 (1991) 1990 Recommendations of the International Commission on Radiological Protection. Annals of the ICRP 21(1–3). Pergamon Press, Oxford

  2. Zeitz L, Kim SH, Kim JH, Detko JF (1977) Determination of relative biological effectiveness (RBE) of soft X-rays. Radiat Res 70:552–563

    PubMed  CAS  Google Scholar 

  3. Bistrović M, Bišćan M, Viculin T (1986) RBE of 20(kV X-rays determined for survival of V 79 cells. Radiother Oncol 7:175–180

    PubMed  Google Scholar 

  4. Hoshi M, Antoku S, Nakamura N, Russel WJ, Miller RC, Sawada S, Mizuno M, Nishio S (1988) Soft X-rays dosimetry and RBE for survival of Chinese hamster V79 cells. Int J Radiat Biol 54:577–591

    PubMed  CAS  Google Scholar 

  5. Spadinger I, Palcic B (1992) The relative biological effectiveness of Co γ-rays, 55 kVp X-rays, 250 kVp X-rays, and 11(MeV electrons at low doses. Int J Radiat Biol 61:345–353

    PubMed  CAS  Google Scholar 

  6. Frankenberg-Schwager M, Garg I, Frankenberg D, Greve B, Severin E, Uthe D, Göhde W (2002) Mutagenicity of low-filtered 30 kVp X-rays, mammography X-rays and conventional X-rays in cultured mammalian cells. Int J Radiat Biol 78:781–789

    Article  PubMed  CAS  Google Scholar 

  7. Panteleeva A, Słonina D, Brankovic K, Spekl K, Pawelke J, Hoinkis C, Dörr W (2003) Clonogenic survival of human keratinocytes and rodent fibroblasts after irradiation with 25 kV X-rays. Radiat Environ Biophys 42:95–100

    Article  PubMed  Google Scholar 

  8. Virsik RP, Harder D, Hansmann I (1977) The RBE of 30 kV X-rays for the induction of dicentric chromosomes in human lymphocytes. Radiat Environ Biophys 14:109–121

    Article  PubMed  CAS  Google Scholar 

  9. Sasaki MS, Kobayashi K, Hieda K, Yamada T, Ejima Y, Maezawa H, Furusawa Y, Ito T, Okada S (1989) Induction of chromosome aberrations in human lymphocytes by monochromatic X-rays of quantum energy between 4.8 and 14.6 keV. Int J Radiat Biol 56:975–988

    PubMed  CAS  Google Scholar 

  10. Schmid E, Regulla D, Kramer HM, Harder D (2002) The effect of 29 kV X-rays on the dose response of chromosome aberrations in human lymphocytes. Radiat Res 158:771–777

    Article  PubMed  CAS  Google Scholar 

  11. Krumrey M, Ulm G, Schmid E (2004) Dicentric chromosomes in monolayers of human lymphocytes produced by monochromatized synchrotron radiation with photon energies from 1.83 keV to 17.4 keV. Radiat Environ Biophys 43:1–6

    Article  PubMed  CAS  Google Scholar 

  12. Frankenberg D, Kelnhofer K, Bär K, Frankenberg-Schwager M (2002) Enhanced neoplastic transformation by mammography X-rays relative to 200 kVp X-rays: indication for a strong dependence on photon energy of the RBE(M) for various end points. Radiat Res 157:99–105. Erratum in: Radiat Res 158:126

    Article  PubMed  CAS  Google Scholar 

  13. Göggelmann W, Jacobsen C, Panzer W, Walsh L, Roos M, Schmid E (2003) Re-evaluation of the RBE of 29 kV X-rays (mammography X-rays) relative to 220 kV X-rays using neoplastic transformation of human CGL1-hybrid cells. Radiat Environ Biophys 42:175–182

    Article  PubMed  Google Scholar 

  14. Heyes GH, Mill AJ (2004) The neoplastic transformation potential of mammography X-rays and atomic bomb spectrum radiation. Radiat Res 162:120–127

    Article  PubMed  CAS  Google Scholar 

  15. Brenner DJ, Amols HI (1989) Enhanced risk from low-energy screen-film mammography X-rays. Br J Radiol 62:910–914

    Article  PubMed  CAS  Google Scholar 

  16. Verhaegen F, Reniers B (2004) Microdosimetric analysis of various mammography spectra: lineal energy distributions and ionization cluster analysis. Radiat Res 162:592–599

    Article  PubMed  CAS  Google Scholar 

  17. Kellerer AM (2002) Electron spectra and the RBE of X-Rays. Radiat Res 158:13–22

    Article  PubMed  CAS  Google Scholar 

  18. Paine TM, Soule HD, Pauley RJ, Dawson PJ (1992) Characterization of epithelial phenotypes in mortal and immortal human breast cells. Int J Cancer 50:463–473

    PubMed  CAS  Google Scholar 

  19. Fenech M (1993) The cytokinesis-block micronucleus technique: a detailed description of the method and its application to genotoxicity studies in human populations. Mutat Res 285:35–44

    PubMed  CAS  Google Scholar 

  20. Slonina D, Spekl K, Panteleeva A, Brankovic K, Hoinkis C, Dörr W (2003) Induction of micronuclei in human fibroblasts and keratinocytes by 25 kV X-rays. Radiat Environ Biophys 42:55–61

    Article  PubMed  Google Scholar 

  21. NIST physical reference data (1998) X-ray and gamma-ray data http://www.physics.nist.gov/PhysRefData/

  22. Boone JM, Seibert JA (1997) An accurate method for computer-generating tungsten anode X-ray spectra from 30 to 140 kV. Med Phys 24:1661–1670

    Article  PubMed  CAS  Google Scholar 

  23. Wolfram Research (2000) Mathematica 4.1. http://www.wolfram.com

  24. Marples B, Joiner MC (1993) The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res 133:41–51

    PubMed  CAS  Google Scholar 

  25. Hill MA (2004) The variation in biological effectiveness of X-rays and gamma rays with energy. Radiat Prot Dosim 112:471–481

    Article  CAS  Google Scholar 

  26. Verhaegen F, Vral A (1994) Sensitivity of micronucleus induction in human lymphocytes to low-LET radiation qualities: RBE and correlation of RBE and LET. Radiat Res 139:208–213

    PubMed  CAS  Google Scholar 

  27. Schmid E, Krumrey M, Ulm G, Roos H, Regulla D (2003) The maximum low-dose RBE of 17.4 and 40 keV monochromatic X-rays for the induction of dicentric chromosomes in human peripheral lymphocytes. Radiat Res 160:499–504

    Article  PubMed  CAS  Google Scholar 

  28. Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS (2001) Production of delayed death and neoplastic transformation in CGL1 cells by radiation-induced bystander effects. Radiat Res 156:251–258

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lehnert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehnert, A., Lessmann, E., Pawelke, J. et al. RBE of 25 kV X-rays for the survival and induction of micronuclei in the human mammary epithelial cell line MCF-12A. Radiat Environ Biophys 45, 253–260 (2006). https://doi.org/10.1007/s00411-006-0062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-006-0062-3

Keywords

Navigation