Skip to main content
Log in

Melt inclusions in zircon: a window to understanding the structure and evolution of the magmatic system beneath the Laguna del Maule volcanic field

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Explosive silicic eruptions pose a significant threat to society, yet the development and destabilization of the underlying silicic magmatic systems are still controversial. Zircons provide simultaneous information on the trace element composition and age of silicic magmatic systems, while melt inclusions in quartz and plagioclase yield important constraints on their volatile content as well as magma storage depth. Melt inclusions in zircons (MIZs) combine these data from a single mineral grain, recording the age, storage depth, temperature, and composition of magmas, and thus provide unique constraints on the structure and evolution of silicic magmatic systems. We studied MIZs from the Laguna del Maule (LdM) volcanic field in the southern Andes that is among the most active Pleistocene-Holocene rhyolitic volcanic centers worldwide and a potentially hazardous system displaying inflation rates in excess of 25 cm/yr. The host zircon ages suggest that the LdM MIZ record extends to ~ 30 kyr before eruption, in contrast to the melt inclusions in LdM plagioclase and quartz crystals that formed only decades to centuries before eruption. The major element compositions of MIZs are minimally affected by post-entrapment crystallization, and agree well with the LdM rhyolitic whole rock data. The MIZs record long-term differences in zircon-saturated melt composition between two eruptive units (rdm: Rhyolite of the Laguna del Maule vs. rle: Rhyolite of Los Espejos). The more evolved major element composition of rle MIZs than rdm MIZs, suggests a long-term deeper connection of the rdm crystal mush to a more primitive magma body than that of the rle. The evidence of slow H diffusion observed in MIZs suggest that their H2O contents are not significantly affected by diffusion of H through the host zircon. The magma storage pressures of 1.1 to 2.8 kbars recorded by the H2O contents of rdm and rle MIZs are consistent with the optimal emplacement window (2.0 ± 0.5 kbar) of silicic magma reservoir growth, storage, and eruptibility based on thermomechanical modeling (Huber et al. 2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data are available in the electronic supplementary material.

References

  • Andersen NL, Singer BS, Jicha BR, Beard BL, Johnson CM, Licciardi JM (2017) Pleistocene to holocene growth of a large upper crustal rhyolitic magma reservoir beneath the active Laguna del Maule volcanic field, central Chile. J Petrol 58(1):85–114. https://doi.org/10.1093/petrology/egx006

    Article  CAS  Google Scholar 

  • Andersen NL, Singer BS, Costa F, Fournelle J, Herrin JS, Fabbro GN (2018) Petrochronologic perspective on rhyolite volcano unrest at Laguna del Maule, Chile. Earth Planet Sci Lett 493:57–70. https://doi.org/10.1016/j.epsl.2018.03.043

    Article  CAS  Google Scholar 

  • Andersen NL, Singer BS, Coble MA (2019) Repeated rhyolite eruption from heterogeneous hot zones embedded within a cool shallow magma reservoir. J Geophys Res Solid Earth 124(3):2582–2600. https://doi.org/10.1029/2018jb016418

    Article  CAS  Google Scholar 

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  CAS  Google Scholar 

  • Bachmann O, Bergantz GW (2006) Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies. J Volcanol Geoth Res 149(1–2):85–102

    Article  CAS  Google Scholar 

  • Bai T, Thurber C, Lanza F, Singer BS, Bennington N, Keranen K, Cardona C (2020) Teleseismic tomography of the Laguna del Maule volcanic field in Chile. J Geophys Res 125(8):e2020JB019449

    Article  Google Scholar 

  • Barboni M, Boehnke P, Schmitt AK, Harrison TM, Shane P, Bouvier AS, Baumgartner L (2016) Warm storage for arc magmas. Proc Natl Acad Sci 113(49):13959–13964. https://doi.org/10.1073/pnas.1616129113

    Article  CAS  Google Scholar 

  • Barker S, Wilson C, Smith EG, Charlier B, Wooden JL, Hiess J, Ireland T (2014) Post-supereruption magmatic reconstruction of Taupo volcano (New Zealand), as reflected in zircon ages and trace elements. J Petrol 55(8):1511–1533

    Article  CAS  Google Scholar 

  • Barth AP, Wooden JL (2010) Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. Chem Geol 277(1–2):149–159

    Article  CAS  Google Scholar 

  • Bindeman IN, Simakin AG (2014) Rhyolites—Hard to produce, but easy to recycle and sequester: Integrating microgeochemical observations and numerical models. Geosphere 10(5):930–957

    Article  Google Scholar 

  • Bindeman IN, Fu B, Kita NT, Valley JW (2008) Origin and evolution of silicic magmatism at Yellowstone based on ion microprobe analysis of isotopically zoned zircons. J Petrol 49(1):163–193

    Article  CAS  Google Scholar 

  • Blum TB, Kitajima K, Kita N, Valley JW (2023) Analysis of trace elements in zircon at high mass resolving power using forward-geometry secondary ion mass spectrometry. In: Goldschmidt 2023 Conference Proceedings

  • Blundy J, Cashman K (2005) Rapid decompression-driven crystallization recorded by melt inclusions from Mount St. Helens Volcano. Geology 33(10):793–796

    Article  CAS  Google Scholar 

  • Blundy J, Cashman K (2008) Petrologic reconstruction of magmatic system variables and processes. RiMG 69(1):179–239

    CAS  Google Scholar 

  • Bodnar R, Student JJ (2006) Melt inclusions in plutonic rocks: petrography and microthermometry. In: Webster JD (ed) Melt inclusions in plutonic rocks, vol 36. Montreal, Quebec, pp 1–25

    Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334

    Article  CAS  Google Scholar 

  • Bouvier A-S, Ushikubo T, Kita NT, Cavosie AJ, Kozdon R, Valley JW (2012) Li isotopes and trace elements as a petrogenetic tracer in zircon: insights from Archean TTGs and sanukitoids. Contrib Mineral Petr 163:745–768

    Article  CAS  Google Scholar 

  • Bucholz CE, Jagoutz O, VanTongeren JA, Setera J, Wang Z (2017) Oxygen isotope trajectories of crystallizing melts: insights from modeling and the plutonic record. Geochim Cosmochim Acta 207:154–184

    Article  CAS  Google Scholar 

  • Cashman KV, Sparks RSJ, Blundy JD (2017) Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355(6331):3055

    Article  Google Scholar 

  • Chamberlain KJ, Wilson CJN, Wooden JL, Charlier BLA, Ireland TR (2014) New perspectives on the bishop tuff from zircon textures, ages and trace elements. J Petrol 55(2):395–426. https://doi.org/10.1093/petrology/egt072

    Article  CAS  Google Scholar 

  • Charlier B, Wilson C (2010) Chronology and evolution of caldera-forming and post-caldera magma systems at Okataina Volcano, New Zealand from zircon U-Th model-age spectra. J Petrol 51(5):1121–1141

    Article  CAS  Google Scholar 

  • Cheng H, Edwards RL, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371:82–91

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010) Zircon reveals protracted magma storage and recycling beneath Mount St Helens. Geology 38(11):1011–1014

    Article  CAS  Google Scholar 

  • Coble MA, Vazquez JA, Barth AP, Wooden J, Burns D, Kylander-Clark A, Jackson S, Vennari CE (2018) Trace element characterisation of MAD-559 zircon reference material for ion microprobe analysis. Geostand Geoanal Res 42(4):481–497

    Article  CAS  Google Scholar 

  • Contreras C, Cashman KV, Rust A, Cortés M (2022) The influence of magma storage and ascent conditions on Laguna del Maule rhyolite eruptions. J Petrol 63(12):121

    Article  Google Scholar 

  • Cooper KM, Kent AJR (2014) Rapid remobilization of magmatic crystals kept in cold storage. Nature 508(7497):554–554. https://doi.org/10.1038/nature13280

    Article  CAS  Google Scholar 

  • Cordell D, Unsworth MJ, Diaz D (2018) Imaging the Laguna del Maule Volcanic Field, central Chile using magnetotellurics: Evidence for crustal melt regions laterally-offset from surface vents and lava flows. Earth Planet Sci Lett 488:168–180. https://doi.org/10.1016/j.epsl.2018.01.007

    Article  CAS  Google Scholar 

  • Cordell D, Unsworth MJ, Diaz D, Reyes-Wagner V, Currie CA, Hicks SP (2019) Fluid and melt pathways in the central chilean subduction zone near the 2010 Maule earthquake (35–36°S) as inferred from magnetotelluric data. Geochem Geophys Geosys 20(4):1818–1835. https://doi.org/10.1029/2018gc008167

    Article  Google Scholar 

  • Crowley JL, Schoene B, Bowring S (2007) U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35(12):1123–1126

    Article  Google Scholar 

  • Danyushevsky LV, Sokolov S, Falloon TJ (2002) Melt inclusions in olivine phenocrysts: using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J Petrol 43(9):1651–1671

    Article  CAS  Google Scholar 

  • Donovan JJ, Singer JW, Armstrong JT (2016) A new EPMA method for fast trace element analysis in simple matrices. Am Mineral 101(8):1839–1853

    Article  Google Scholar 

  • Eiler JM, Crawford A, Elliott T, Farley KA, Valley JW, Stolper EM (2000) Oxygen isotope geochemistry of oceanic-arc lavas. J Petrol 41(2):229–256

    Article  CAS  Google Scholar 

  • Feigl KL, Le Mével H, Tabrez Ali S, Córdova L, Andersen NL, DeMets C, Singer BS (2014) Rapid uplift in Laguna del Maule volcanic field of the Andean Southern Volcanic zone (Chile) 2007–2012. Geophys J Int 196(2):885–901

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petr 154(4):429–437. https://doi.org/10.1007/s00410-007-0201-0

    Article  CAS  Google Scholar 

  • Fierstein J (2018) Postglacial eruptive history established by mapping and tephra stratigraphy provides perspectives on magmatic system beneath Laguna del Maule, Chile. In: AGU Chapman Conference, Integrating Geophysical, Petrochronologic, and Modeling Perspectives on Large Silicic Magma Systems, Quinamavida, Chile January, vol., pp 7–12

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308(9):957–1039

    Article  CAS  Google Scholar 

  • Ghiorso MS, Gualda GA (2015) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib Mineral Petr 169:1–30

    Article  CAS  Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ 18O in zircons from oceanic plagiogranites and gabbros. Contrib Mineral Petr 161:13–33

    Article  CAS  Google Scholar 

  • Grimes CB, Wooden JL, Cheadle MJ, John BE (2015) Fingerprinting tectono-magmatic provenance using trace elements in igneous zircon. Contrib Mineral Petr. https://doi.org/10.1007/s00410-015-1199-3

    Article  Google Scholar 

  • Hildreth W (2004) Volcanological perspectives on Long Valley, Mammoth Mountain, and Mono Craters: several contiguous but discrete systems. J Volcanol Geoth Res 136(3–4):169–198. https://doi.org/10.1016/j.jvolgeores.2004.05.019

    Article  CAS  Google Scholar 

  • Hildreth W, Godoy E, Fierstein J, Singer B (2010) Laguna del Maule volcanic field: Eruptive history of a Quaternary basalt-to-rhyolite distributed volcanic field on the Andean rangecrest in central Chile. In, vol. Servicio Nacional de Geología y Minería,

  • Huber C, Parmigiani A (2018) A physical model for three-phase compaction in silicic magma reservoirs. J Geophys Res 123(4):2685–2705

    Article  CAS  Google Scholar 

  • Huber C, Townsend M, Degruyter W, Bachmann O (2019) Optimal depth of subvolcanic magma chamber growth controlled by volatiles and crust rheology. Nat Geosci 12(9):762

    Article  CAS  Google Scholar 

  • Iacovino K, Matthews S, Wieser PE, Moore G, Bégué F (2021) VESIcal Part I: An open-source thermodynamic model engine for mixed volatile (H2O-CO2) solubility in silicate melts. Earth and Space Science 8(11):e2020EA001584

    Article  Google Scholar 

  • Ireland TR, Williams IS (2003) Considerations in zircon geochronology by SIMS. RiMG 53(1):215–241

    CAS  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Physical review C 4(5):1889–1906

    Article  Google Scholar 

  • Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B (2006) MPI-DING reference glasses for in situ microanalysis: New reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7(2)

  • Kelly JL, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete quartz cements of the St. Peter Sandstone: High precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Acta 71(15):3812–3832

    Article  CAS  Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analysis and the effect of sample topography. Chem Geol 264(1–4):43–57

    Article  CAS  Google Scholar 

  • Kitajima K, Ushikubo T, Kita NT, Maruyama S, Valley JW (2012) Relative retention of trace element and oxygen isotope ratios in zircon from archean rhyolite, panorama formation, north pole dome, pilbara craton, Western Australia. Chem Geol 332:102–115

    Article  Google Scholar 

  • Klug JD, Singer BS, Kita NT, Spicuzza MJ (2020) Storage and evolution of laguna del maule rhyolites: insight from volatile and trace element contents in melt inclusions. J Geophys Res Solid Earth. https://doi.org/10.1029/2020JB019475

    Article  Google Scholar 

  • Kress VC, Ghiorso MS (2004) Thermodynamic modeling of post-entrapment crystallization in igneous phases. J Volcanol Geoth Res 137(4):247–260

    Article  CAS  Google Scholar 

  • Lackey JS, Valley JW, Chen JH, Stockli DF (2008) Dynamic magma systems, crustal recycling, and alteration in the central Sierra Nevada batholith: the oxygen isotope record. J Petrol 49(7):1397–1426

    Article  CAS  Google Scholar 

  • Le Mevel H, Feigl KL, Cordova L, DeMets C, Lundgren P (2015) Evolution of unrest at Laguna del Maule volcanic field (Chile) from InSAR and GPS measurements, 2003 to 2014. Geophys Res Lett 42(16):6590–6598. https://doi.org/10.1002/2015gl064665

    Article  Google Scholar 

  • Le Mevel H, Gregg PM, Feigl KL (2016) Magma injection into a long-lived reservoir to explain geodetically measured uplift: Application to the 2007–2014 unrest episode at Laguna del Maule volcanic field, Chile. J Geophys Res Solid Earth 121(8):6092–6108. https://doi.org/10.1002/2016jb013066

    Article  Google Scholar 

  • Le Mével H, Córdova L, Cardona C, Feigl K (2021) Unrest at the Laguna del Maule volcanic field 2005–2020: renewed acceleration of deformation. Bull Volcanol 83(6):39

    Article  Google Scholar 

  • Ludwig K (2001) Squid (1.13 b). A user’s manual: Berkeley Geochronology Center Special Publication 2

  • Ludwig KR (2003) Isoplot (3.41d), a geochronological toolkit for Excel. A user’s manual: Berkeley Geochronology Center Special Publication 4

  • Mahood G (1990) Second reply to comment of RSJ Sparks, HE Huppert and CJN Wilson on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in the precaldera lavas of Glass Mountain.” Earth Planet Sci Lett 99(4):395–399

    Article  CAS  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the Earth. Chem Geol 120(3–4):223–253

    Article  CAS  Google Scholar 

  • Miller CA, Williams-Jones G, Fournier D, Witter J (2017) 3D gravity inversion and thermodynamic modelling reveal properties of shallow silicic magma reservoir beneath Laguna del Maule, Chile. Earth Planet Sci Lett 459:14–27

    Article  CAS  Google Scholar 

  • Morgan GB, London D (2005) Effect of current density on the electron microprobe analysis of alkali aluminosilicate glasses. Am Mineral 90(7):1131–1138

    Article  CAS  Google Scholar 

  • Nasdala L, Corfu F, Schoene B, Tapster SR, Wall CJ, Schmitz MD, Ovtcharova M, Schaltegger U, Kennedy AK, Kronz A (2018) GZ 7 and GZ 8–two zircon reference materials for SIMS U-Pb geochronology. Geostand Geoanal Res 42(4):431–457

    Article  CAS  Google Scholar 

  • Newman S, Stolper EM, Epstein S (1986) Measurement of water in rhyolitic glasses; calibration of an infrared spectroscopic technique. Am Mineral 71(11–12):1527–1541

    CAS  Google Scholar 

  • Newman S, Epstein S, Stolper E (1988) Water, carbon dioxide, and hydrogen isotopes in glasses from the ca. 1340 AD eruption of the Mono Craters, California: Constraints on degassing phenomena and initial volatile content. J Volcanol Geoth Res 35(1–2):75–96

    Article  CAS  Google Scholar 

  • Page FZ, Fu B, Kita NT, Fournelle J, Spicuzza MJ, Schulze DJ, Viljoen F, Basei MA, Valley JW (2007) Zircons from kimberlite: new insights from oxygen isotopes, trace elements, and Ti in zircon thermometry. Geochim Cosmochim Acta 71(15):3887–3903

    Article  CAS  Google Scholar 

  • Pearce NJ, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21(1):115–144

    Article  CAS  Google Scholar 

  • Peres P, Kita NT, Valley JW, Fernandes F, Schuhmacher M (2013) New sample holder geometry for high precision isotope analyses. Surf Interface Anal 45(1):553–556

    Article  CAS  Google Scholar 

  • Qin Z, Lu F, Anderson AT (1992) Diffusive reequilibration of melt and fluid inclusions. Am Mineral 77(5–6):565–576

    CAS  Google Scholar 

  • Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer (vol 161, pg 293. Contrib Mineral Petr 161(2):313–314. https://doi.org/10.1007/s00410-010-0564-5

    Article  CAS  Google Scholar 

  • Reid MR, Vazquez JA (2017) Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff Indonesia. Geochem Geophys Geosys 18(1):156–177

    Article  CAS  Google Scholar 

  • Roedder E (1984) Volume 12: Fluid Inclusions. Rev Mineral 12:644

    Google Scholar 

  • Rose-Koga E, Bouvier A-S, Gaetani GA, Wallace P, Allison C, Andrys J, De La Torre CA, Barth A, Bodnar R, Gartner AB et al. (2021) Silicate melt inclusions in the new millennium: a review of recommended practices for preparation, analysis, and data presentation. Chem Geol 570:120145

    Article  CAS  Google Scholar 

  • Rubin AE, Cooper KM, Till CB, Kent AJ, Costa F, Bose M, Gravley D, Deering C, Cole J (2017) Rapid cooling and cold storage in a silicic magma reservoir recorded in individual crystals. Science 356(6343):1154–1156

    Article  CAS  Google Scholar 

  • Sano Y, Terada K, Fukuoka T (2002) High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. Chem Geol 184(3–4):217–230

    Article  CAS  Google Scholar 

  • Schaen AJ, Singer BS, Cottle JM, Garibaldi N, Schoene B, Satkoski AM, Fournelle J (2018) Textural and mineralogical record of low-pressure melt extraction and silicic cumulate formation in the late Miocene Risco Bayo-Huemul plutonic complex, southern Andes. J Petrol 59(10):1991–2016

    CAS  Google Scholar 

  • Schaen AJ, Schoene B, Dufek J, Singer BS, Eddy MP, Jicha BR, Cottle JM (2021) Transient rhyolite melt extraction to produce a shallow granitic pluton. Sci Adv 7(21):0604

    Article  Google Scholar 

  • Singer BS, Hildreth W, Vincze Y (2000) 40Ar/39Ar evidence for early deglaciation of the central Chilean Andes. Geophys Res Lett 27(11):1663–1666

    Article  Google Scholar 

  • Singer BS, Andersen NL, Le Mével H, Feigl KL, DeMets C, Tikoff B, Thurber CH, Jicha BR, Cardona C, Córdova L (2014a) Dynamics of a large, restless, rhyolitic magma system at Laguna del Maule, southern Andes Chile. GSA Today 24(12):4–10

    Article  Google Scholar 

  • Singer BS, Jicha BR, Fournelle JH, Beard BL, Johnson CM, Smith KE, Greene SE, Kita NT, Valley JW, Spicuzza MJ (2014b) Lying in wait: deep and shallow evolution of dacite beneath Volcán de Santa María, Guatemala. Geological Society, London, Special Publications 385(1):209–234

    Article  CAS  Google Scholar 

  • Singer BS, Le Mével H, Licciardi JM, Córdova L, Tikoff B, Garibaldi N, Andersen NL, Diefenbach AK, Feigl KL (2018) Geomorphic expression of rapid Holocene silicic magma reservoir growth beneath Laguna del Maule Chile. Sci Adv 4(6):1513

    Article  Google Scholar 

  • Sobolev V, Kostyuk V (1975) Magmatic crystallization based on a study of melt inclusions. Fluid Inclusion Res 9:182–253

    Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  CAS  Google Scholar 

  • Stelten ME, Cooper KM (2012) Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth Planet Sci Lett 313:1–11

    Article  Google Scholar 

  • Szymanowski D, Wotzlaw JF, Ellis BS, Bachmann O, Guillong M, von Quadt A (2017) Protracted near-solidus storage and pre-eruptive rejuvenation of large magma reservoirs. Nat Geosci 10(10):777

    Article  CAS  Google Scholar 

  • Thomas J, Bodnar R, Shimizu N, Chesner C (2003) Melt inclusions in zircon. RiMG 53(1):63–87

    CAS  Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. MAC Short Course 41:19–63

    CAS  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petr 150(6):561–580

    Article  CAS  Google Scholar 

  • Valley JW, Kitajima K, Spicuzza MJ, Blum TB, Kita NT (2024) UWZ1, A Zircon Standard for Oxygen Isotope Analysis by SIMS: IMF Revisited. Goldschmidt Conf, Chicago

    Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geoth Res 140(1–3):217–240

    Article  CAS  Google Scholar 

  • Wallace PJ, Anderson AT, Davis AM (1999) Gradients in H2O, CO2, and exsolved gas in a large-volume silicic magma system: Interpreting the record preserved in melt inclusions from the Bishop Tuff. J Geophys Res Solid Earth 104(B9):20097–20122

    Article  CAS  Google Scholar 

  • Wang X-L, Coble MA, Valley JW, Shu X-J, Kitajima K, Spicuzza MJ, Sun T (2014) Influence of radiation damage on late jurassic zircon from southern China: Evidence from in situ measurements of oxygen isotopes, laser Raman, U-Pb ages, and trace elements. Chem Geol 389:122–136

    Article  CAS  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304

    Article  CAS  Google Scholar 

  • Wespestad CE, Thurber CH, Andersen NL, Singer BS, Cardona C, Zeng XF, Bennington NL, Keranen K, Peterson DE, Cordell D, Unsworth M, Miller C, Williams-Jones G (2019) Magma reservoir below laguna del maule volcanic field, Chile imaged with surface-wave tomography. J Geophys Res Solid Earth 124(3):2858–2872. https://doi.org/10.1029/2018jb016485

    Article  CAS  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley JW, Whitehouse MJ, Kronz A, Morishita Y, Nasdala L, Fiebig J (2004) Further characterisation of the 91500 zircon crystal. Geostand Geoanal Res 28(1):9–39

    Article  CAS  Google Scholar 

  • Williams IS (1997) U-Th-Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Application of microanalytical techniques to understanding mineralizing processes, vol 7. Reviews in Economic Geology, Society of Economic Geologists, pp 1–35

  • Wilson CJN, Charlier BLA (2009) Rapid rates of magma generation at contemporaneous magma systems, Taupo volcano, New Zealand: insights from U-Th model-age spectra in zircons. J Petrol 50(5):875–907. https://doi.org/10.1093/petrology/egp023

    Article  CAS  Google Scholar 

  • Wolff JA, Ellis B, Ramos FC, Starkel WA, Boroughs S, Olin PH, Bachmann O (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 236:275–286

    Article  Google Scholar 

  • Wotzlaw JF, Bindeman IN, Stern RA, D’Abzac FX, Schaltegger U (2015) Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions. Sci Rep 5:14026

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jorge Vazquez (USGS) for assistance at the USGS-Stanford SHRIMP-RG laboratory, Bil Schneider (UW–Madison) for assistance with SEM analyses and imaging, Drae Rogers (UW–Madison) for help with sample preparation, and Nathan Andersen (USGS) for providing a LdM zircon mount. Constructive and thoughtful reviews by Andreas Audétat and an anonymous reviewer as well as editorial comments by Othmar Müntener helped improve this manuscript. This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 856555). WiscSIMS is supported by NSF (EAR-2004618) and the University of Wisconsin–Madison.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kei Shimizu.

Additional information

Communicated by Othmar Müntener.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 925 kb)

Supplementary file2 (XLSX 54 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, K., Blum, T.B., Bonamici, C.E. et al. Melt inclusions in zircon: a window to understanding the structure and evolution of the magmatic system beneath the Laguna del Maule volcanic field. Contrib Mineral Petrol 179, 59 (2024). https://doi.org/10.1007/s00410-024-02133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-024-02133-0

Keywords

Navigation