Skip to main content

Advertisement

Log in

Geochemical and Sr–Nd–Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The intimate spatial relationship between the Jiajika Li-rich pegmatites (hosting the largest Li ore deposit in China) and the Majingzi granite pluton allows us to explore the origin of pegmatites and associated Li-mineralization mechanism by examining the trace elements and Sr–Nd–Li isotopes of the two rock units in eastern Tibetan plateau. The Jiajika Li-rich pegmatites show extremely low CaO, TFe2O3, MgO, Sr and Ba, and high Li and Rb when compared with the adjacent Majingzi two-mica granite, and their initial Sr isotopic ratios (0.7212–0.7249, obtained from apatite) are significantly higher than those of the granite and the surrounding Xikang Group metapelites (0.7128–0.7163). Whole rock Li isotopes analyses yield δ7Li values of + 0.3 to + 1.9‰ for the Jiajika Li-rich pegmatites, − 0.5 to − 0.8‰ for the Majingzi two-mica granite, and − 3.2 to + 2.4‰ for the Xikang Group metapelites, respectively. Modeling studies on trace elements and Li isotopes consistently demonstrate that the Jiajika Li-rich pegmatites are unlikely to have been originated from extreme differentiation of the Majingzi two-mica granite as traditionally thought. Instead, they could be directly generated by low degrees (5–20%) of muscovite-dehydration melting of a mixed source dominated by Li-rich claystones and subordinate Xikang Group metapelites under amphibolite facies conditions. We suggest that the existence of Li-rich claystone interlayers (probably accompanied by evaporates and carbonates) in the source is crucial to pegmatitic spodumene mineralization. This explains the abundance of fluxing components and Li mineralization in the Jiajika pegmatite, and the general observation that Li-rich pegmatites always show Li isotopic compositions lighter than the Li-poor counterparts in the same orogenic belt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

source rocks and melts, respectively, F is the fraction of melts formed, and D is the bulk distribution coefficient of the residual solid (Jolliff et al. 1992). Ticks on lines represent the degrees of partial melting

Fig. 12

Similar content being viewed by others

References

  • Araoka D, Kawahata H, Takagi T, Watanabe Y, Nishimura K, Nishio Y (2014) Lithium and strontium isotopic systematics in playas in Nevada, USA: constraints on the origin of lithium. Miner Deposita 49:371–379

    Article  Google Scholar 

  • Barnes EM, Weis D, Groat LA (2012) Significant Li isotope fractionation in geochemically evolved rare element-bearing pegmatites from the Little Nahanni Pegmatite Group, NWT, Canada. Lithos 13–133:21–36

    Article  Google Scholar 

  • Bartels A, Behrens H, Holtz F, Schmidt BC, Fechtelkord M, Knipping J, Crede L, Baasner A, Pukallus N (2013) The effect of fluorine, boron and phosphorus on the viscosity of pegmatite forming melts. Chem Geol 346:184–198

    Article  Google Scholar 

  • Bryant CJ, Chappell BW, Bennett VC, McCulloch MT (2004) Lithium isotopic compositions of the New England Batholith: correlations with inferred source rock compositions. Trans R Soc Edinb Earth Sci 95:199–214

    Article  Google Scholar 

  • Chen B, Huang C, Zhao H (2020) Lithium and Nd isotopic constraints on the origin of Li-poor pegmatite with implications for Li mineralization. Chem Geol 551:119–769

    Article  Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Article  Google Scholar 

  • Dai HZ, Wang DH, Liu LJ, Yu Y, Dai JJ (2019) Geochronology and geochemistry of Li (Be)-bearing granitic pegmatites from the Jiajika superlarge Li-polymetallic deposit in western Sichuan, China. J Earth Sci 30:707–727

    Article  Google Scholar 

  • De Sigoyer J, Vanderhaeghe O, Duchêne S (2014) Generation and emplacement of Triassic granitoids within the Songpan Ganze accretionary-orogenic wedge in a context of slab retreat accommodated by tear faulting, Eastern Tibetan Plateau, China. J Asian Earth Sci 88:192–216

    Article  Google Scholar 

  • Deveaud S, Millot R, Villaros A (2015) The genesis of LCT type granitic pegmatites, as illustrated by lithium isotopes in micas. Chem Geol 411:97–111

    Article  Google Scholar 

  • Fan JJ, Tang GJ, Wei GJ, Wang H, Xu YG, Wang Q, Zhou JS, Zhang ZY, Huang TY, Wang ZL (2020) Lithium isotope fractionation during fluid exsolution: implications for Li mineralization of the Bailongshan pegmatites in the west Kunlun, NW Tibet. Lithos 352–353:105–236

    Article  Google Scholar 

  • Fei GC, Menuge JF, Chen CS, Yang YL, Deng Y, Li YG, Zheng L (2021) Evolution of pegmatite ore-forming fluid: the Lijiagou spodumene pegmatites in the Songpan-Garze Fold Belt, southwestern Sichuan province, China. Ore Geol Rev 139:104441

    Article  Google Scholar 

  • Flesch GD, Anderson AR, Svec HJ (1973) A secondary isotopic standard for 6Li/7Li determinations. Int J Mass Spectrom Ion Phys 12:265–272

    Article  Google Scholar 

  • Fu XF, Yuan LP, Wang DH, Hou L, Pan M, Hao XF, Liang B, Tang Y (2015) Mineralization characteristics and prospecting model of newly discovered X03 rare metal vein in Jiajika orefield, Sichuan. Mineral Deposits 34:1172–1186 (in Chinese with English abstract)

    Google Scholar 

  • Gao Y, Casey JF (2012) Lithium isotope composition of ultramafic geological reference materials JP-1 and DTS-2. Geostand Geoanal Res 36:75–81

    Article  Google Scholar 

  • Goodenough KM, Lusty PAJ, Roberts NMW, Key RM, Garba A (2014) Post-collisional Pan-African granitoids and rare metal pegmatites in western Nigeria: Age, petrogenesis, and the ‘pegmatite conundrum.’ Lithos 200–201:22–34

    Article  Google Scholar 

  • Hao XF, Fu XF, Liang B, Yuan LP, Pan M, Tang Y (2015) Formation ages of granite and X03 pegmatite vein in Jiajika, western Sichuan, and their geological significance. Mineral Deposits 34:1199–1208 (in Chinese with English abstract)

    Google Scholar 

  • Hou JL, Li JK, Zhang YJ, Li C (2018) Li isotopic composition and its constraints on rare metal mineralization of Jiajika two-mica granite, Sichuan province. Earth Sci 43:2042–2054 (in Chinese with English abstract)

    Google Scholar 

  • Hulsbosch N, Hertogen J, Dewaele S, AndréL MP (2014) Alkali metal and rare earth element evolution of rockforming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochim Cosmochim Acta 132:349–374

    Article  Google Scholar 

  • Jahn BM, Wu FY, Chen B (2000) Granitoids of the Central Asian orogenic belt and continental growth in the phanerozoic. Trans Royal Soc Edinb Earth Sci 91:181–193

    Google Scholar 

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Janoušek V, Erban V, Holub FV, Magna T, Bellon H, Mlcoch B, Wiechert U, Rapprich V (2010) Geochemistry and genesis of behind-arc basaltic lavas from eastern Nicaragua. J Volcanol Geoth Res 192:232–256

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Shearer CK (1992) Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim Cosmochim Acta 56:1915–1939

    Article  Google Scholar 

  • Koešter E, Pawley AR, Fernandes LAD, Porcher CC, Soliani E (2002) Experimental melting of cordierite gneiss and the petrogenesis of syntranscurrent peraluminous granites in Southern Brazil. J Petrol 43:1595–1616

    Article  Google Scholar 

  • Košler J, Magna T, Mlčoch B, Mixa P, Nyvlt D, Holub FV (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218

    Article  Google Scholar 

  • Langmuir CH, Vocke RD, Hanson GN, Hart SR (1978) A general mixing equation with implications to Iceland basalts. Earth Planet Sci Lett 148:193–205

    Google Scholar 

  • Li JK, Chou IM (2016) An occurrence of metastable cristobalite in spodumene-hosted crystal-rich inclusions from Jiajika pegmatite deposit, China. J Geochem Explor 171:29–36

    Article  Google Scholar 

  • Li CF, Li XH, Li QL, Guo JH, Yang YH (2012) Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme. Anal Chim Acta 727:54–60

    Article  Google Scholar 

  • Li J, Huang XL, Wei GJ, Liu Y, Ma JL, Han L, He PL (2018a) Lithium isotope fractionation during magmatic differentiation and hydrothermal processes in rare-metal granites. Geochem Cosmochim Acta 240:64–79

    Article  Google Scholar 

  • Li MZ, Qin YL, Li Z, Xu YF, Wu WH, Liu W, Ye YK, Zhou X (2018b) Geochemical characteristics of two-mica granite and granite pegmatite in Jiajika area, western Sichuan, and their geological implications. Acta Petrologica Et Mineralogica 37:366–378 (in Chinese with English abstract)

    Google Scholar 

  • Li XF, Tian SH, Wang DH, Zhang HJ, Zhang YJ, Fu XF, Hao XF, Hou KJ, Zhao Y, Qin Y, Yu Y, Wang H (2020) Genetic relationship between pegmatite and granite in Jiajika lithium deposit in western Sichuan: evidence from zircon U-Pb dating, Hf-O isotope and geochemistry. Miner Depos 39:273–304 (in Chinese with English abstract)

    Google Scholar 

  • Lin YJ, Zheng MP, Zhang YS, Xing EY, Redfern SAT, Xu JM, Zhong J, Niu XS (2020) Mineralogical and geochemical characteristics of Triassic lithium-rich K-bentonite deposits in Xiejiacao section. South China Minerals 10:69

    Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51:537–571

    Article  Google Scholar 

  • Liu LJ, Wang DH, Hou KJ, Tian SH, Zhao Y, Fu XF, Yuan LP, Hao XF (2017) Application of lithium isotope to Jiajika New No. 3 Pegmatite Lithium Polymetallic Vein in Sichuan. Earth Sci Front 24:167–171 (in Chinese with English abstract)

    Google Scholar 

  • London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104

    Article  Google Scholar 

  • London D (2018) Ore-forming processes within granitic pegmatites. Ore Geol Rev 101:349–383

    Article  Google Scholar 

  • Magna T, Janousek V, Kohút M, Wiechert U (2010) Fingerprinting sources of orogenic plutonic rocks from Variscan belt with lithium isotopes and possible link to subduction-related origin of some A-type granites. Chem Geol 274:94–107

    Article  Google Scholar 

  • Maneta V, Baker DR, Minarik W (2015) Evidence for lithium-aluminosilicate supersaturation of pegmatite-forming melts. Contrib Miner Petrol 170:4

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  Google Scholar 

  • Marschall HR, Pogge von Strandmann PAE, Seitz HM (2007) The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth Planet Sci Lett 262:563–580

    Article  Google Scholar 

  • Middlemost EAK (1985) Magmas and magmatic rocks: an introduction to igneous petrology. Longman Group, London

    Google Scholar 

  • Montel JM, Vielzeuf D (1997) Partial melting of metagreywackes, Part II. Compositions of minerals and melts. Contrib Miner Petrol 128:176–196

    Article  Google Scholar 

  • Müller A, Romer RL, Pedersen RB (2017) The Sveconorwegian Pegmatite Province –thousands of pegmatites without parental granites. Can Mineral 55:283–315

    Article  Google Scholar 

  • Pan GT, Zhu DC, Wang LQ, Liao ZL, Geng QR, Jiang XS (2004) Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: evidence from geology and geophysics. Earth Sci Front 11:371–382 (in Chinese with English abstract)

    Google Scholar 

  • Patiňo-Douce AE, Harris N (1998) Experimental constraints on Himalayan antexis. J Petrol 39:689–710

    Article  Google Scholar 

  • Roda-Robles E, Pesquera A, Gil-Crespo PP, Torres-Ruiz J (2012) From granite to highly evolved pegmatite: a case study of the Pinilla de Fermoselle granite–pegmatite system (Zamora, Spain). Lithos 153:192–207

    Article  Google Scholar 

  • Romer RL, Meixner A (2014) Lithium and boron isotopic fractionation in sedimentary rocks during metamorphism: the role of rock composition and protolith mineralogy. Geochmica Et Cosmochimica Acta 128:158–177

    Article  Google Scholar 

  • Shaw RA, Goodenough KM, Roberts NMW, Horstwood MSA, Chenery SR, Gunn AG (2016) Petrogenesis of rare-metal pegmatites in high-grade metamorphic terranes: a case study from the Lewisian Gneiss Complex of north-west Scotland. Precambrian Res 281:338–362

    Article  Google Scholar 

  • Simmons WB, Webber KL (2008) Pegmatite genesis: state of the art. Eur J Mineral 20:421–438

    Article  Google Scholar 

  • Simmons WB, Falster AU, Webber KL, Roda-Robles E, Boudreaux AP, Grassi LR, Freeman G (2016) Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis. Can Mineral 54:1053–1070

    Article  Google Scholar 

  • Stevens G, Clemens JD, Droop GTR (1997) Melt production during granulite-facies anatexis: experimental data from “primitive” metasedimentary protoliths. Contrib Miner Petrol 128:352–370

    Article  Google Scholar 

  • Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Special Publ 42:313–345

    Article  Google Scholar 

  • Sun H, Gao YJ, Xiao YL, Gu HO, Casey JF (2016) Lithium isotope fractionation during incongruent melting: constraints from post-collisional leucogranite and residual enclaves from Bengbu Uplift, China. Chem Geol 439:71–82

    Article  Google Scholar 

  • Sun Y, Gao Y, Wang D, Dai H, Gu W, Li J, Zhang L (2018) Zircon U-Pb dating of ‘Mung Bean Rock’ in the tongliang area, chongqing and its geological significance. Rock Miner Anal 36:649–658 (In Chinese with English abstract)

    Google Scholar 

  • Tanaka T, Togashi S, Kamioka H, Amakawa H, Kagami H, Hamamoto T, Yuhara M, Orihashi Y, Yoneda S, Shimizu H, Kunimaru T, Takahashi K, Yanagi T, Nakano T, Fujimaki H, Shinjo R, Asahara Y, Tanimizu M, Dragusanu C (2000) Jndi-1: a neodymium isotopic reference in consistency with lajolla neodymium. Chem Geol 168:279–281

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Dalpé C, Tomascak PB, Chappell BW, Gao S (2004) Lithium isotopic composition and concentration of the upper continental crust. Geochim Cosmochim Acta 68:4167–4178

    Article  Google Scholar 

  • Teng FZ, McDonough WF, Rudnick RL, Walker RJ, Sirbescu MLC (2006) Lithium isotopic systematics of granites and pegmatites from the Black Hills, South Dakota. Am Mineral 91:1488–1498

    Article  Google Scholar 

  • Thirlwall MF (1991) Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis. Chem Geol 94:85–104

    Article  Google Scholar 

  • Thomas R, Davidson P (2012) Water in granite and pegmatite-forming melts. Ore Geol Rev 46:32–46

    Article  Google Scholar 

  • Thomas R, Davidson P (2016) Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state e consequences for the formation of pegmatites and ore deposits. Ore Geol Rev 72:1088–1101

    Article  Google Scholar 

  • Thomas M, Williams-Jones AE (2018) The physical and chemical evolution of fluids in rare-element granitic pegmatites associated with the Lacorne pluton, Québec, Canada. Chem Geol 493:281–297

    Article  Google Scholar 

  • Tischendorf G, Gottesmann B, Foerster HJ, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral Mag 61:809–834

    Article  Google Scholar 

  • Tong XR, Liu YS, Hu ZC, Chen HH, Zhou L, Hu QH, Xu R, Deng LX, Chen CF, Yang L, Gao S (2016) Accurate determination of Sr isotopic compositions in clinopyroxene and silicate glasses by LA-MC-ICP-MS. Geostand Geoanal Res 40:85–99

    Article  Google Scholar 

  • Vieira R, Roda-Robles E, Pesquera A, Lima A (2011) Chemical variation and significance of micas from the Fregeneda-Almendra pegmatitic field (Central-Iberian Zone, Spain and Portugal). Am Mineral 96:637–645

    Article  Google Scholar 

  • Vielzeuf D, Schmidt MW (2001) Melting relations in hydrous systems revised: applications to metapelites, metagreywackes, and metabasalts. Contrib Mineral Petrol 141:251–267

    Article  Google Scholar 

  • Villaros A, Pichavant M (2019) Mica-liquid trace elements partitioning and the granite-pegmatite connection: the St-Sylvestre complex (Western French Massif Central). Chem Geol 528:119–265

    Article  Google Scholar 

  • Vlastélic I, Staudacher T, Bachèlery P, Télouk P, Neuville D, Benbakkar M (2011) Lithium isotope fractionation during magma degassing: constraints from silicic differentiates and natural gas condensates from Piton de la Fournaise volcano (Réunion Island). Chem Geol 284:26–34

    Google Scholar 

  • Wang DH, Li PG, Qu WJ, Lie ZY, Liao YC (2013) Discovery and preliminary study of the high tungsten and lithium contents in the Dazhuyuan bauxite deposit, Guizhou, China. Sci China Earth Sci 56:145–152 (in Chinese with English abstract)

    Article  Google Scholar 

  • White RW, Powell R, Holland TJB (2007) Progress relating to calculation of partial melting equilibria for metapelites. J Metamorph Geol 25:511–527

    Article  Google Scholar 

  • Wolf M, Romer RL, Glodny J (2019) Isotope disequilibrium during partial melting of metasedimentary rocks. Geochim Cosmochim Acta 257:163–183

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer R, Heinrich W (2006) Temperature-dependent isotopic fractionation of lithium between clinopyroxene and high-pressure hydrous fluids. Contrib Mineral Petrol 151:112–120

    Article  Google Scholar 

  • Wunder B, Meixner A, Romer RL, Feenstra A, Schettler G, Heinrich W (2007) Lithium isotope fractionation between Li bearing staurolite, Li-mica and aqueous fluids: an experimental study. Chem Geol 238:277–290

    Article  Google Scholar 

  • Xu ZQ, Fu XF, Wang RC, Li GW, Zheng YL, Zhao ZB, Lian DY (2020) Generation of lithium-bearing pegmatite deposits within the Songpan-Ganze orogenic belt, East Tibet. Lithos 354–355:105–281

    Google Scholar 

  • Yan S (2020) Enrichment of lithium from Xinmin bauxite in northern Guizhou and its indication of lithium isotope. Dissertation, Guizhou University, China (in Chinese with English abstract)

  • Yang YH, Wu FY, Yang JH, Chew DM, Xie LW, Chu ZY, Zhang YB, Huang C (2014) Sr and Nd isotopic compositions of apatite reference materials used in U-Th-Pb geochronology. Chem Geol 385:35–55

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Annu Rev Earth Planet Sci 28:211–280

    Article  Google Scholar 

  • Yuan C, Zhou MF, Sun M, Zhao Y, Wilde S, Long X, Yan D (2010) Triassic granitoids in the eastern Songpan Ganzi Fold Belt, SW China: Magmatic response to geodynamics of the deep lithosphere. Earth Planet Sci Lett 290:481–492

    Article  Google Scholar 

  • Zack T, Tomascak PB, Rudnick RL, Dalpe C, McDonough WF (2003) Extremely light Li in orogenic eclogites: the role of isotopic fractionation during dehydration in subducted oceanic crust. Earth Planet Sci Lett 208:279–290

    Article  Google Scholar 

  • Zhang W, Hu Z, Liu Y, Wu T, Deng X, Guo J, Han Z (2018) Improved in situ Sr isotopic analysis by a 257 nm femtosecond laser in combination with the addition of nitrogen for geological minerals. Chem Geol 479:10–21

    Article  Google Scholar 

  • Zhang HJ, Tian SH, Wang DH, Li XF, Liu T, Zhang YJ, Fu XF, Hao XF, Hou KJ, Zhao Y, Qin Y (2021) Lithium isotope behavior during magmatic differentiation and fluid exsolution in the Jiajika granite–pegmatite deposit, Sichuan, China. Ore Geol Rev 134:104–139

    Article  Google Scholar 

  • Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC, Zhang ZM (2017) The assembly of Rodinia: the correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambr Res 290:32–48

    Article  Google Scholar 

Download references

Acknowledgements

Hai-ou Gu, Yanjiao Chen and Xunfei Li are thanked for their assistance in Li isotopic analyses. We are grateful to the two anonymous reviewers and the editor-in-chief for their insightful comments that led to significant improvement of the manuscript. This work is funded by two grants (#42030303 and #41872051) from the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Additional information

Communicated by Hans Keppler.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 730 KB)

Supplementary file2 (PDF 14054 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Chen, B., Huang, C. et al. Geochemical and Sr–Nd–Li isotopic constraints on the genesis of the Jiajika Li-rich pegmatites, eastern Tibetan Plateau: implications for Li mineralization. Contrib Mineral Petrol 177, 4 (2022). https://doi.org/10.1007/s00410-021-01869-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-021-01869-3

Keywords

Navigation