Skip to main content
Log in

Feldspar thermometry in pegmatites: truth and consequences

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Temperatures of crystallization for all or portions of three thin granitic pegmatite dikes in southern California are derived from feldspar solvus thermometry, with supporting data from the K/Cs ratio of K-feldspar, the extent of Al/Si order in K-feldspar, and the texture of granophyre found along the margins of dikes. Although K-feldspars become perthitic and increasingly ordered toward the centers of dikes, their ratio of K/Cs falls from margin to core along trajectories that reflect fractional crystallization from silicate melt without subsequent interaction with an aqueous solution in an open system. A few sporadic samples that record loss of Cs, and consequent rise in K/Cs, validate the test of fidelity that the perthites generally retain their igneous compositions. Feldspar solvus thermometry from these three dikes indicates that their pegmatite-forming melts crystallized at ~ 375–475 °C. Those low temperatures are consistent with the occurrence of granophyric plagioclase–quartz intergrowths along the borders of pegmatites, thick and thin, that arise from thermal quenching of their melts against much cooler host rocks, and hence at much shallower depths than the igneous sources of the pegmatite-forming melts. The temperature profiles are nearly isothermal across the pegmatites, but where variation exists, apparent temperatures are highest along their margins or in their central domains (cores). Plagioclase shows normal fractionation of decreasing An content from margins to center, which mimics the line of descent with cooling down the solidus and solvus surfaces. However, the fractionation trends in the feldspars are attributable to their isothermal crystallization far from the equilibrium of the liquidus at a highly undercooled state, not to crystallization upon cooling on the solidus surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(see London et al. 2012)

Fig. 2
Fig. 3

Boundaries between feldspar structural states and the names associated with them in quotation marks are from Kroll and Ribbe (1987)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. See Fig. 6 of London et al. (2012). The optical images therein are typical and representative of the new dikes studied in this work.

  2. HEAT3D V. 4.15 program by Wohletz is available as freeware at https://kware-heat3d.software.informer.com/, last accessed March 2019. Inputs for this simulation are: (1) Rock: thermal conductivity = 3 W/m K, Clauser and Huegnes (1995); heat capacity = 1100 J/kg K, Robertson (1988), bulk density = 3000 kg/m3. (2) Magma: thermal conductivity = 2.5 W/m K, Zhao et al. (2016); heat capacity = 2200 J/kg K: Toplis et al. (2001).

  3. Experiments are based on the total time at temperature, which includes the nucleation delay, the time from undercooling to the onset of crystallization, and the time after crystallization ceases due to the approach to equilibrium on the liquidus. The actual growth interval of crystals spans a fraction of that time.

References

  • Baker DR, Freda C (2001) Eutectic crystallization in the undercooled orthoclase–quartz–H2O system: experiments and simulations. Eur J Mineral 13:453–466

    Article  Google Scholar 

  • Blasi A, de Pol Blasi C (2000) Crystal structures of alkali feldspars from granitic pegmatites: a review. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 30:73–109

    Google Scholar 

  • Boyd B, Sirbescu ML, Matty DJ (2003) Crystallization temperatures of the Tin Mountain Pegmatite, Black Hills, South Dakota: insights from compositions of coexisting feldspars. In: Geological Society of America Programs with Abstracts vol 35, p 192 (abstr)

  • Brown JA (2001) Mineralogy and geochemistry of alkali feldspars from the Tanco pegmatite, southeastern Manitoba. M.Sc. thesis, University of Manitoba, Winnipeg, Manitoba

  • Brown JA, Martins T, Černý P (2017) The Tanco pegmatite at Bernic Lake, Manitoba. XVII. Mineralogy and geochemistry of alkali feldspars. Can Mineral 55:483–500

    Article  Google Scholar 

  • Burnham CW, Nekvasil H (1986) Equilibrium properties of granite pegmatite magmas. Am Mineral 71:239–263

    Google Scholar 

  • Cameron EN, Jahns RH, McNair AH, Page LR (1949) Internal structure of granitic pegmatites. Econ Geol Mon 2:115

    Google Scholar 

  • Carron JP, Lagache M (1980) Étude expérimentale du fractionnement des éléments Rb, Cs, Sr, et Ba entre feldspaths alcalins, solutions hydrothermales et liquides silicatés dans le système Q.Ab.Or.H2O à 2 kbar entere 700 et 800°C. Bull Minéral 103:571–578

    Article  Google Scholar 

  • Catlos EJ, Harrison TM, Kohn MJ, Grove M, Ryerson FJ (2001) Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. J Geophys Res 106B:16177–16204

    Article  Google Scholar 

  • Černý P (1974) Evolution of feldspars in granitic pegmatites. NATO Adv Study Inst Ser C Math Phys Sci 421:501–540

    Google Scholar 

  • Černý P (2005) The Tanco rare-element pegmatite deposit, Manitoba: regional context, internal anatomy, and global comparisons. In: Linnen R, Sampson IM (eds) Rare-element geochemistry and mineral deposits. GAC short course notes, vol 17. Geological Association of Canada, pp 127–158

  • Černý P, Meintzer RE, Anderson AJ (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Can Mineral 23:381–421

    Google Scholar 

  • Chakoumakos BC, Lumpkin GR (1990) Pressure–temperature constraints on the crystallization of the Harding pegmatite, Taos County, New Mexico. Can Mineral 28:287–298

    Google Scholar 

  • Clauser C, Huegnes E (1995) Thermal conductivity of rocks and minerals. Am Geophys Union Ref Shelf 3:105–126

    Google Scholar 

  • Colombo F, Sfragulla J, del Gonzáles Tánago J (2012) The garnet–phosphate buffer in peraluminous granitic magmas: a case study from pegmatites of the Pocho District, Córdoba, Argentina. Can Mineral 50:1555–1571

    Article  Google Scholar 

  • Dingwell DB (1998) The glass transition in hydrous granitic melts. Phys Earth Planet Inter 107:1–8

    Article  Google Scholar 

  • Edgeworth R, Dalton BJ, Parnell T (1984) The pitch drop experiment. Eur J Phys 5:198–200

    Article  Google Scholar 

  • Elkins LT, Grove TL (1990) Ternary feldspar experiments and thermodynamic models. Am Mineral 75:544–559

    Google Scholar 

  • Evensen JM (2001) The geochemical budget of beryllium in silicic melts and superliquidus, subliquidus, and starting state effects on the kinetics of crystallization in hydrous haplogranite melts. Unpublished Ph.D. dissertation, University of Oklahoma, Norman, Oklahoma, p 293

  • Evensen JM, London D (2002) Experimental silicate mineral/melt partition coefficients for beryllium, and the beryllium cycle from migmatite to pegmatite. Geochim Cosmochim Acta 66:2239–2265

    Article  Google Scholar 

  • Evensen JM, London D, Wendlandt RF (1999) Solubility and stability of beryl in granitic melts. Am Mineral 84:733–745

    Article  Google Scholar 

  • Felch M, Falster AU, Simmons WB (2016) Iron-bearing pollucite and tourmaline replacement of garnet in the garnet line in the Mt. Mica and Havey pegmatites, Western Maine. Can Mineral 54:1071–1086

    Article  Google Scholar 

  • Fenn PM (1986) On the origin of graphic granite. Am Mineral 71:325–330

    Google Scholar 

  • Finch AA, Klein J (1999) The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135:234–243

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Groat LA, Mulja T, Mauthner MHF, Ercit TS, Rausdepp M (2003) Geology and mineralogy of the Little Nahanni rare-element granitic pegmatites, Northwest Territories. Can Mineral 41:139–160

    Article  Google Scholar 

  • Hulsbosch N, Hertogen J, Dewaele S, André L, Muchez P (2014) Alkali metal and rare earth element evolution of rock-forming minerals from the Gatumba area pegmatites (Rwanda): quantitative assessment of crystal-melt fractionation in the regional zonation of pegmatite groups. Geochimica et Cosmochimica Acta 132:349–374

    Article  Google Scholar 

  • Jahns RH (1953) The genesis of pegmatites. I. Occurrence and origin of giant crystals. Am Mineral 38:563–598

    Google Scholar 

  • Jahns RH (1982) Internal evolution of pegmatite bodies. In: Černý P (ed) Granitic pegmatites in science and industry. Mineral Association of Canada Short Course Handbook, vol 8, pp 293–327

  • Jahns RH, Burnham CW (1969) Experimental studies of pegmatite genesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ Geol 64:843–864

    Article  Google Scholar 

  • Jambon A, Carron J-P (1976) Diffusion of Na, K, Rb and Cs in glasses of albite and orthoclase composition. Geochim Cosmochim Acta 40:897–903

    Article  Google Scholar 

  • Kargl A, Meyer M, Koza M, Schober H (2006) Formation of channels for fast-ion diffusion in alkali silicate melts: a quasielastic neutron scattering study. Am Soc Phys Phys Rev B 74:014304

    Article  Google Scholar 

  • Kroll H, Ribbe PH (1987) Determining (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions: a review. Am Mineral 72:491–506

    Google Scholar 

  • London D (1984) Experimental phase equilibria in the system LiAlSiO4-SiO2-H2O: a petrogenetic grid for lithium-rich pegmatites. Am Mineral 69:995–1004

    Google Scholar 

  • London D (1990) Internal differentiation of rare-element pegmatites: a synthesis of recent research. In: Stein HJ, Hannah JL (eds) Ore-bearing granite systems; petrogenesis and mineralizing processes. Geological Society of America Special Paper 246, pp 35–50

  • London D (1999) Melt boundary layers and the growth of pegmatitic textures. Can Mineral 37:826–827 (abstr.)

    Google Scholar 

  • London D (2008) Pegmatites. Can Mineral Spec Publ 10:368

    Google Scholar 

  • London D (2009) The origin of primary textures in granitic pegmatites. Can Mineral 47:697–724

    Article  Google Scholar 

  • London D (2013) Crystal-filled cavities in granitic pegmatites: bursting the bubble. Rocks Miner 88:527–534

    Article  Google Scholar 

  • London D (2014a) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184:74–104

    Article  Google Scholar 

  • London D (2014b) Subsolidus isothermal fractional crystallization. Am Mineral 99:543–546

    Article  Google Scholar 

  • London D (2014c) Zonal structure of layered pegmatites: thin versus thick dikes. In: Geological Society of America Programs with Abstracts vol 46, p 751

  • London D (2015) Reply to Thomas and Davidson on “A petrologic assessment of internal zonation in granitic pegmatites” (London, 2014a). Lithos 212–215:469–484

    Article  Google Scholar 

  • London D (2016) Rare-element granitic pegmatites. In: Verplanck PL, Hitzman MW (eds) Rare earth and critical elements in major deposit types, vol 18. Society of Economic Geology Inc, Littleton, pp 165–193

    Google Scholar 

  • London D (2018a) Ore-forming processes within granitic pegmatites. Ore Geol Rev 101:349–383

    Article  Google Scholar 

  • London D (2018b) Reading pegmatites: what quartz and feldspars say. Rocks Miner 93:320–336

    Article  Google Scholar 

  • London D (2019) Reading pegmatites: what pollucite says. Rocks Miner 94:420–425

    Article  Google Scholar 

  • London D, Morgan GB VI (2017) Experimental crystallization of the Macusani obsidian, with applications to lithium-rich granitic pegmatites. J Petrol 58:1005–1030

    Article  Google Scholar 

  • London D, Morgan GB VI, Hervig RL (1989) Vapor-undersaturated experiments in the system macusanite–H2O at 200 MPa, and the internal differentiation of granitic pegmatites. Contrib Mineral Petrol 102:1–17

    Article  Google Scholar 

  • London D, Morgan GBVI, Icenhower J (1998) Stability and solubility of pollucite in granitic systems at 200 MPa H2O. Can Mineral 36:497–510

    Google Scholar 

  • London D, Morgan GBVI, Paul KA, Guttery BM (2012) Internal evolution of a miarolitic granitic pegmatite: the Little Three Mine, Ramona, California (USA). Can Mineral 50:1025–1054

    Article  Google Scholar 

  • Luth RW, Muncill GE (1989) Fluorine in aluminosilicate systems; phase relations in the system NaAlSi3O8–CaAl2Si2O8–F2O-1. Geochim Cosmochim Acta 53:1937–1942

    Article  Google Scholar 

  • Maner JL, London D, Icenhower JP (2019) Enrichment of manganese to spessartine saturation in granite-pegmatite systems. Am Mineral 104:1625–1637

    Article  Google Scholar 

  • Morgan GB VI, London D (1999) Crystallization of the Little Three layered pegmatite-aplite dike, Ramona District, California. Contrib Mineral Petrol 136:310–330

    Article  Google Scholar 

  • Morgan GB VI, London D (2005) Phosphorus distribution between potassic alkali feldspar and metaluminous haplogranite liquid at 200 MPa (H2O): the effect of undercooling on crystal-liquid systematics. Contrib Mineral Petrol 150:456–471

    Article  Google Scholar 

  • Morgan GB VI, London D (2012) Process of granophyre crystallization in the Long Mountain Granite, southern Oklahoma. Geol Soc Am Bull 124:1251–1261

    Article  Google Scholar 

  • Neves LJPF, Godinho MM (1999) Structural state of K-feldspar in some Hercynian granites from Iberia; a review of data and controlling factors. Can Mineral 37:691–700

    Google Scholar 

  • Parsons I (1969) Subsolidus crystallization behaviour in the system KAlSi3O8–NaAlSi3O8–H2O. Mineral Mag 37:173–180

    Article  Google Scholar 

  • Parsons I, Magee CW, Allen CM, Shelley JMG, Lee MR (2009) Mutual replacement reactions in alkali feldspars II: trace element partitioning and geothermometry. Contrib Mineral Petrol 157:663–687

    Article  Google Scholar 

  • Rao BR, Rao AT (1990) Geothermometry of co-existing K-feldspar-plagioclase pairs from granites and pegmatites of Rampachoda, North Varam area in the eastern Ghats granulite belt. Indian J Geol 62:173–177

    Google Scholar 

  • Robertson EC (1988) Thermal properties of rocks. In: US Geological Survey open file report 88–441, p 106

  • Rubin AM (1995) Getting granite dikes out of the source region. J Geophys Res 100B:5911–5929

    Article  Google Scholar 

  • Sanchez-Munoz L, Garcia-Guinea J, Zagorsky VY, Juwono T, Modreski PJ (2012) The evolution of twin patterns in perthitic K-feldspar from granitic pegmatites. Can Mineral 50:989–1024

    Article  Google Scholar 

  • Schulze F, Behrens H, Holtz F, Roux J, Johannes W (1995) Influence of water on the viscosity of a haplogranitic melt. Am Mineral 81:1155–1165

    Article  Google Scholar 

  • Seck HA (1971a) Koexistierende alkalifeldspite und plagioklase im system NaAlSi3O8–KAlSi3O8–CaAl2Si2O8–H2O bei temperaturen von 650°C bis 900°C. Neues Jahrbuch für Mineralogie Abhandlungen 115:315–345

    Google Scholar 

  • Seck HA (1971b) Der einfluss des drucks auf die zusammensetzung koexistierender alkalifeldspiite und plagioklase. Contrib Mineral Petrol 31:67–86

    Article  Google Scholar 

  • Simmons WB, Falster AU, Felch M (2015) Pollucite from three distinct assemblages in the Mount Mica pegmatite, Paris, Oxford County, Maine, USA. In: 7th International symposium on granitic pegmatites, PEG 2015 Książ, Poland, p 96 (abstr)

  • Stilling A, Černý P, Vanstone PJ (2006) The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. Can Mineral 44:599–623

    Article  Google Scholar 

  • Swanson SE (1977) Relation of nucleation and crystal-growth to the development of granitic textures. Am Mineral 62:966–978

    Google Scholar 

  • Thomas R, Davidson P (2015) Comment on “A petrologic assessment of internal zonation in granitic pegmatites” by David London (2014). Lithos 212:462–468

    Article  Google Scholar 

  • Toplis MJ, Gottmann J, Knoche R, Dingwell DB (2001) Heat capacities of haplogranitic glasses and liquids. Geochim Cosmochim Acta 65:1985–1994

    Article  Google Scholar 

  • Tuttle OF, Bowen NL (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol Soc Am Mem 74:153

    Google Scholar 

  • Van Lichtervelde M, Holtz F, Melcher F (2018) The effect of disequilibrium crystallization on Nb–Ta fractionation in pegmatites: constraints from crystallization experiments of tantalite–tapiolite. Am Mineral 103:1401–1416

    Article  Google Scholar 

  • Watson EB (1975) Diffusion of cesium ions in H2O-saturated granitic melt. Science 205:1259–1260

    Article  Google Scholar 

  • Webber KL, Simmons WB, Falster AU, Foord EE (1999) Cooling rates and crystallization dynamics of shallow level pegmatite–aplite dikes, San Diego County, California. Am Mineral 84:708–717

    Article  Google Scholar 

  • Wen S, Nekvasil H (1994) SOLVCAL: an interactive program package for calculating ternary feldspar solvus and two-feldspar geothermometry. Comput Geosci 20:1025–1040

    Article  Google Scholar 

  • Zhao XG, Wanga J, Chena F, Li PF, Ma LK, Xie JL, Liua YM (2016) Experimental investigations on the thermal conductivity characteristics of Beishan granitic rocks for China’s HLW disposal. Tectonophysics 683:124–137

    Article  Google Scholar 

Download references

Acknowledgements

We thank George B. Morgan VI for microprobe analyses of the Palomar feldspars. Blue Sheppard, Wallace Kleck, and Louis B. Spaulding Jr. (dec.) made this project possible by providing the dike sections studied. The electron microprobe laboratory is funded by the Office of the Vice President of Research at the University of Oklahoma, with most recent Grants for upgrades from the National Science Foundation (EAR-1401940) and the U.S. Department of Energy (Laboratory Equipment Donation Program, item 8975793213S7130). Research support came from National Science Foundation Grants EAR-0946322, EAR-1623110, and from the Norman R. Gelphman professorship to D. L. We thank an anonymous reviewer comments and meticulous editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David London.

Additional information

Communicated by Timothy L. Grove.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

London, D., Hunt, L.E., Schwing, C.R. et al. Feldspar thermometry in pegmatites: truth and consequences. Contrib Mineral Petrol 175, 8 (2020). https://doi.org/10.1007/s00410-019-1617-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-019-1617-z

Keywords

Navigation