Skip to main content
Log in

Petrology of spinel lherzolite xenoliths from Youkou volcano, Adamawa Massif, Cameroon Volcanic Line: mineralogical and geochemical fingerprints of sub-rift mantle processes

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The basaltic maar of Youkou, situated in the Adamawa Volcanic Massif in the eastern branch of the continental segment of the Cameroon Volcanic Line, contains mantle-derived xenoliths of various types in pyroclastites. Spinel-bearing lherzolite xenoliths from the Youkou volcano generally exhibit protogranular textures with olivine (Fo89.4−90.5), enstatite (En89 − 91Fs8.7−9.8Wo0.82−1.13), clinopyroxene, spinel (Cr#Sp = 9.4–13.8), and in some cases amphibole (Mg# = 88.5–89.1). Mineral equilibration temperatures in the lherzolite xenoliths have been estimated from three–two pyroxene thermometers and range between 835 and 937 °C at pressures of 10–18 kbar, consistent with shallow mantle depths of around 32–58 km. Trends displayed by bulk-rock MgO correlate with Al2O3, indicating that the xenoliths are refractory mantle residues after partial melting. The degree of partial melting estimated from spinel compositions is less than 10%: evidences for much higher degrees of depletion are preserved in one sample, but overprinted by refertilization in others. Trace element compositions of the xenoliths are enriched in highly incompatible elements (LREE, Sr, Ba, and U), indicating that the spinel lherzolites underwent later cryptic metasomatic enrichment induced by plume-related hydrous silicate melts. The extreme fertility (Al2O3 = 6.07–6.56 wt% in clinopyroxene) and the low CaO/Al2O3 ratios in the spinel lherzolites suggest that they could not be a simple residue of partial melting of primitive mantle and must have experienced refertilization processes driven by the infiltration of carbonatite or carbonated silicate melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams GE, Bishop FC (1986) The olivine-clinopyroxene geobarometer: experimental results in the CaO–FeO–MgO–SiO2 system. Contrib Mineral Petrol 94:230–237

    Article  Google Scholar 

  • Ali M, Arai S (2007) Clinopyroxene-rich lherzolite xenoliths from Bir Ali, Yemen-possible product of peridotite/melt reactions. J Mineral Petrol Sci 102:137–142

    Article  Google Scholar 

  • Allègre CJ, Poirier JP, Humler E, Hofmann AW (1995) The chemical composition of the earth. Earth Planet Sci Lett 134:515–526

    Article  Google Scholar 

  • Arai S (1987) An estimation of the least depleted spinel peridotite on the basis of olivine–spinel mantel array. Neues Jahrb Mineral Mon 8:347–354

    Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine–spinel compositional relation-ships. Rev Interpret Chem Geol 113:191–204

    Article  Google Scholar 

  • Baker MB, Beckett JR (1999) The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth Plant Sci Lett 171:49–61

    Article  Google Scholar 

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Miner Petrol 107:27–40

    Article  Google Scholar 

  • Barth MG, Mason PRD, Davies GR, Drury MR (2008) The Othris Ophiolite, Greece: a snapshot of subduction initiation at a mid-ocean ridge. Lithos 100:234–254

    Article  Google Scholar 

  • Berg JH, Moscasti RJ, Herz DL (1989) A petrologic geotherm from a continental rift in Antarctica. Earth Planet Sci Lett 93:98–108

    Article  Google Scholar 

  • Biehl L, Landgrebe D (2002) Multispec: a tool multispectral-hyperspectral image data analysis. Comput Geosci 28:1153–1159

    Article  Google Scholar 

  • Bodinier J-L, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite–peridotite veined mantle by refertilization reactions: evidence from the Ronda Peridotite (Southern Spain). J Petrol 49:999–1025

    Article  Google Scholar 

  • Boyd FR (1989) Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96:15–26

    Article  Google Scholar 

  • Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolite II. New thermomometer, and pratica assessment of existing thermometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Browne SE, Fairhead JD (1983) Gravity study of the central African rift system: a model of continental disruption. Part 1: the Ngaoundere and Abu Gabra rift. Tectonophysics 94:187–203

    Article  Google Scholar 

  • Caldeira R, Munhá JM (2002) Petrology of ultramafic nodules from Soa Tomé Island, Cameroon Volcanic line (oceanic sector). J Afr Earth Sci 34:231–246

    Article  Google Scholar 

  • Chapman DS (1986) Thermal gradients in continental crust. In: DAC Dawson JB, Hall J, Wedepohl KH:‘‘The nature of the lower continental crust’’. Geol Soc of London Spec Publ: 63–70

  • Chen JC, Hsu CN, Ho KS (2003) Geochemistry of Cenozoic volcanic rocks and related ultramafic xenoliths from the Jilin and Heilongjiang provinces, northeast China. J Asian Earth Sci 21:1069–1084

    Article  Google Scholar 

  • Choi SH, Mukasa SB, Zhou X-H, Xian XH, Andronikov AV (2008) Mantle dynamics beneath East Asia constrained by Sr, Nd, Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba, North China. Chem Geol 248:40–61

    Article  Google Scholar 

  • Cordery M, Phipps Morgan J (1993) Convection and melting at mid-ocean ridges. J Geophys Res 98:19477–19503

    Article  Google Scholar 

  • Dagwai N, Chazot G, Kamgang P, Mbowou GI, Ngounouno I (2014) Spinel-bearing lherzolite xenoliths from Hosséré Garba (Likok, Adamawa Cameroon): mineral compositions and geothermobarometric implications. Internat J Geosci 5:1435–1444

    Article  Google Scholar 

  • Dautria JM, Girod M (1986) Les enclaves de lherzolites à spinelle et plagioclase du volcan de Dibi (Adamaoua, Cameroun): des témoins du manteau anormal. Bull Minéral 109:275–286

    Google Scholar 

  • Dautria J-M, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilitic district of the Sahara basin. Contrib Mineral Petrol 111:37–52

    Article  Google Scholar 

  • De Hoog JCM, Gall L, Cornell DH (2010) Trace element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem Geol 270:196–215

    Article  Google Scholar 

  • Déruelle B, Ngounouno I, Demaiffe D (2007) The Cameroon hot line (CHL): a unique example of active alkaline intraplate structure in both oceanic and continental lithospheres. Comptes Rendus Géosci 339:589–600

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dorbath L, Dorbath C, Fairhead JD, Stuart GW (1986) A teleseismic delay time studyacross the Central African shear zone in the Adamawa region of Cameroon, West Africa. Geophys J Roy Astron Soc 86:751–766

    Article  Google Scholar 

  • Dumont JF (1987) Étude structurale des bordures nord et sud du plateau de l’Adamaoua: influence du contexte atlantique. Géodynamique 2:55–68

  • Elthon D (1992) Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J Geophy Res 97:9015–9025

    Article  Google Scholar 

  • Fabriès J (1979) Spinel-Olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Article  Google Scholar 

  • Falloon TJ, Green DH, O’Neill HSTC., Hibberson WO (1997) Experimental tests of low degree peridotite partial melt compositions: implications for the nature of anhydrous near-solidus peridotite melts at 1 GPa. Earth Planet Sci Lett 152:149–162

    Article  Google Scholar 

  • Foley SF, Fischer TP (2017) The essential role of continental rifts and lithosphere in the deep carbon cycle. Nat Geosci. https://doi.org/10.1038/s41561-017-0002-7

    Google Scholar 

  • Foley SF, Andronikov AV, Jacob DE, Melzer S (2006) Evidence from Antarctic mantle peridotite xenoliths for changes in mineralogy, geochemistry and geothermal gradients beneath a developing rift. Geochim Cosmochim Acta 70:3096–3120

    Article  Google Scholar 

  • France L, Chazot G, Kornprobst J, Dallai L, Vannucci D, Gregoire M, Bertrand H, Boivin P (2015) Mantle refertilization and magmatism in old orogenic regions: the role of late-orogenic pyroxenites. Lithos 232:49–75

    Article  Google Scholar 

  • Frey FA, Suen CJ, Stockman HW (1985) The Ronda high temperature peridotite: Geochemical and petrogenesis. Geochim Cosmochim Acta 49:2469–2491

    Article  Google Scholar 

  • Galer SJG, O’Nions RK (1989) Chemical and isotopic Studies of ultramafic inclusions from the San Carlos Volcanic Field, Arizona: a bearing on their petrogenesis. J Petrol 30:1033–1064

    Article  Google Scholar 

  • Glaser SM, Foley SF, Günther D (1999) Trace element compositions of minerals in garnet and spinel peridotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia. Lithos 48:263–285

    Article  Google Scholar 

  • Glücklich ME, Mercier J-CC (1989) The Basin-and-Range lithospheric mantle: evidence for homogeneity at the regional scale. TERRA Abstr 1:318

    Google Scholar 

  • Grégoire M, Moine BN, O’Reilly SY, Cottin J-Y, Giret A (2000) Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate and carbonate rich melts (Kerguelen Islands, Indian Ocean). J Petrol 41:477–509

    Article  Google Scholar 

  • Grégoire M, Bell DR, Le Roex AP (2003) Garnet lherzolites from the Kaapvaal craton, South Africa: Trace element evidence for a metasomatic history. J Petrol 44:629–657

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY, Afonso JC, Begg G (2009) The composition and evolution of lithospheric mantle: A re-evaluation and its tectonic implications. J Petrol 50:1185–1204

    Article  Google Scholar 

  • Hamdy M, Meisel T (2002) Metasomatosis in the upper mantle beneath the Sudetes (SW Poland): mineralogical and geochemical constraints. Miner Soc Poland Sp Pap 20:100–102

    Google Scholar 

  • Hart SR, Zindler A (1986) In search of a bulk-earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Heinrich W, Besch T (1992) Thermal history of the upper mantle beneath a young back-arc extensional zone: ultramafic xenoliths from San Luis Potosi, Central Mexico. Contrib Mineral Petrol 111:126–142

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hofmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’ Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297

    Article  Google Scholar 

  • Ionov DA, Prikhod’ko VS, O’ Reilly SY (1995) Peridotite xenoliths in alkali basalts from the Sikhote-Alin, southeastern Siberia, Russia: trace-element signatures of mantle beneath a convergent continental margin. Chem Geol 120:275–294

    Article  Google Scholar 

  • Ishii T, Robinson PT, Maekawa H, Fiske R (1992) Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu-Ogazawara-Mariana forearc. In Proceedings of the Ocean Drilling Program Scientific Results 125 (Fryer P, Pearce JA and Stokking LB Eds.). Ocean Drilling Program, College Station, TX, pp 445–485

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendale M, Dreibus G, Spettel B, Lorenz V, Wanke H (1979) The abundances of major, minor and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Proc 10th Lunar Planet Sci Conf, New York: pp 2031–3050

  • Kampunzu AB, Popoff M (1991) Distribution of the main Phanerozoic African rifts and associated magmatism: introductory notes. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings, the phanerozoic African plate. Springer, Berlin, pp 2–10

    Chapter  Google Scholar 

  • Köhler T, Brey GP (1990) Calcium exchange between olivine and clinopyroxene calibrated as a geothermobarometer for natural peridotites from 2 to 60kb with applications. Geochim Cosmochim Acta 54:2375–2388

    Article  Google Scholar 

  • Le Roux V, Bodinier J-L, Tommasi A, Alard O, Dautria JM, Vauchez A, Riches AJV (2007) The Lherz spinel lherzolite: refertilized rather than pristine mantle. Earth Planet Sci Lett 259:599–612

    Article  Google Scholar 

  • Leake BE, Wooley AR, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino J, Maresch WV, Nickel EH, Schumacher JC, Stephenson NCN, Whittaker EJW, Youzhi G (1997) Nomenclatures of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association commission on new mineral names. Mineral Mag 61:295–321

    Article  Google Scholar 

  • Lee DC, Halliday N, Davies GR, Essene EJ, Fitton GJ, Temdjim R (1996) Melt enrichment of shallow depleted mantle: a detailed petrological, trace element and isotopic study of mantle-derived xenoliths and megacrists from the Cameroon Line. J Petrol 37:415–441

    Article  Google Scholar 

  • Liu CZ, Wu FY, Wilde SA, Yu LJ, Li JL (2010) Anorthitic plagioclase and pargasitic amphibole in mantle peridotites from the Yungbwa Ophiolite (southwestern Tibetan Plateau) formed by hydrous melt metasomatism. Lithos 114:413–422

    Article  Google Scholar 

  • Maaløe S, Aoki K (1977) The major element composition of the upper mantle estimated from the composition of lherzolites. Contrib Mineral Petrol 63:161–173

    Article  Google Scholar 

  • Marzoli A, Piccirillo EM, Renne PR, Bellieni G, Iacumin M, Nyobe JB, Aka FT (2000) The Cameroon volcanic line revisited: petrogenesis of continental basaltic magmas from lithospheric and asthenospheric mantle sources. J Petrol 41:87–109

    Article  Google Scholar 

  • Matsukage KN, Oya M (2010) Petrological and chimical variability of peridotite xenoliths from the Cameroon volcanic line, West Africa: an evidence for plume emplacement. J Mineral Petrol Sci 105:57–69

    Article  Google Scholar 

  • McDonough WF (1990) Constraints on the composition of the continental lithospheric mantle. Earth Planet Sci Lett 101:1–18

    Article  Google Scholar 

  • McDonough WF, Frey FA (1989) Rare earth elements in upper mantle rocks. In: Geochemistry and Mineralogy of Rare Earth Elements (Lipin BR, McKay GA eds) MSA, pp 99–145

  • McGuire AV (1988) Petrology of mantle xenoliths from Harrat Al Kishb: the mantle beneath Western Saudi Arabia. J Petrol 29:73–92

    Article  Google Scholar 

  • Medaris LG Jr, Wang HF, Fournelle JH, Zimmer JH, Jelínek E (1999) A cautionary tale of spinel peridotite thermobarometry: an example from xenoliths of Kozákov volcano, Czech Republic. Geolines 9:92–96

    Google Scholar 

  • Menzies MA (ed) (1990) Archean, proterozoic and phanerozoic lithosphere. In: Continental mantle. Oxford monographs 16. Oxford Sci. Pub., Oxford, pp 67–86

  • Menzies MA. Halliday AN, Palacz Z, Hunter RH, Upton BGJ, Aspen P, Hawkesworth CJ (1987) Evidence from mantle xenoliths for an enriched lithospheric keel under the Outer Hebrides. Nature 325:44–47

    Article  Google Scholar 

  • Meshesha D, Shinjo R, Orihashi Y (2014) Geochemical and Sr-Nd-Pb isotopic compositions of lithospheric mantle: spinel lherzolites in alkaline basalts from the northwestern Ethiopian plateau. J Mineral Petrol Sci 109:241–257

    Article  Google Scholar 

  • Moreau C, Regnoult TM, Déruelle B, Robineau B (1987) A new tectonic model for Cameroon line, Central Africa. Techtonophysics 139:317–334

    Article  Google Scholar 

  • Nehring F, Jacob DE, Barth MG, Foley SF (2008) Laser-ablation ICP-MS analysis of siliceous rock glasses fused on an iridium strip heater using MgO dilution. Microchim Acta 160:153–163

    Article  Google Scholar 

  • Ngako V, Njonfang E, Aka FT, Affaton T, Nnang JM (2006) The North–South Paleozoic to quaternary trend of alkaline magmatism from Niger–Nigeria to Cameroon: Complex interaction between hotspots and Precambrian faults. J Afr Earth Sci 45:241–256

    Article  Google Scholar 

  • Ngounouno I, Nguihdama D, Kamgang P, Déruelle B (2008) Petrology of spinel lherzolite xenoliths in alkali basalts from Liri, South of the Kapsiki Plateau (Northermost Cameroon Hot Line). J Cameroon Acad Sci 8:31–42

    Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxène thermobarometry for garnet peridotite. Part I. calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45:2423–2458

    Article  Google Scholar 

  • Nkouandou OF, Temdjim R (2011) Petrology of spinel lherzolite xenoliths and host basaltic lava from Ngao voglar volcano, Adamawa Massif (Cameroon volcanic line, West Africa): equilibrium conditions and mantle characteristics. J Geosci 56:375–387

    Google Scholar 

  • Nkouandou OF, Ngounouno I, Déruelle B, Ohnenstetter D, Montigny R, Demaiffe D (2008) Petrography of the Mio-Pliocen volcanism to the North and East of Ngaoundéré (Adamawa, Cameroon). CR Geosci 340:28–37

    Article  Google Scholar 

  • Nkouandou OF, Bardintzeff J-M, Fagny AM (2015) Sub-continental lithospheric mantle structure beneath the Adamawa plateau inferred from the petrology of ultramafic xenoliths from Ngaoundere (Adamawa plateau, Cameroon, Central Africa). J Afr Earth Sci 111:26–40

    Article  Google Scholar 

  • Noutchogwé-Tatchum CB (2004) Investigations géophysiques en bordure du plateau de l’Adamaoua (Cameroun): rapport de la gravimétrie à l’étude de la croûte terrestre. Thèse 3ème cycle, Université Yaoundé 1, Cameroun: pp 1–127

  • O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194

    Article  Google Scholar 

  • O’Neill HStC, Wall VJ (1987) The olivine–orthopyroxene–spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle. J Petrol 28: 1169–1191

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1985) A xenolith-derived geotherm for southeastern Australia and its geophysical implications. Tectonophysics 111:41–63

    Article  Google Scholar 

  • O’Reilly SY, Chen D, Griffin WL, Ryan CG (1997) Minor elements in olivine from spinel lherzolite xenoliths: implications for thermobarometry. Mineral Mag 61:257–269

    Article  Google Scholar 

  • Ozawa K (1997) Mechanism of Magma generation contrained by mantle peridotites: solid-dominant open magma system. Bull Volcanol Soc Japan 42:61–85 (Japanese with English abstract).

    Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Penaye J, Toteu SF, Tchameni R, Van Schmus WR, Tchakounte J, Ganwa A, Minyem D, Nsifa EN (2004) The 2.1 Ga West Central African belt in Cameroon: extension and evolution. J Afr Earth Sci 39:159–164

    Article  Google Scholar 

  • Pollack HN, Chapman DS (1977) Regional variation of heat flow, geaotherms, and lithosphere thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Poudjom-Djomani YH, Diament M, Wilson M (1997) Lithospheric structure across the Adamawa plateau (Cameroon) from gravity studies. Tectonophysics 273:317–327

    Article  Google Scholar 

  • Preβ S, Witt G, Seck HA, Eonov D, Kovalenko VI (1986) Spinel peridotites xenoliths from the Taria depression, Mongolia. I: major element chemistry and mineralogy of primitive mantle xenoliths suite. Geochim Cosmochim Acta 50:2587–2599

    Article  Google Scholar 

  • Princivalle F, Salviulo G, Fabro C, Demarchi G (1994) Inter-and intra-crystalline temperature and pressure from NE brawil mantle xenoliths. Contrib Mineral Petrol 116:1–6

    Article  Google Scholar 

  • Princivalle F, Salviulo G, Marzoli A, Piccirillo EM (2000) Clinopyroxene of spinel-peridotite mantle from Lake Nji (Cameroon Volcanic Line, West Africa): crystal chemistry and petrological implication. Contrib Mineral Petrol 139:503–508

    Article  Google Scholar 

  • Princivalle F, DeMin A, Lenaz D, Scarbolo M, Zanetti A (2014) Ultramafic xenoliths from Damaping (Hannuoba region, NE-China): petrogenetic implications from crystal chemistry of pyroxenes, olivine and Cr-spinel and trace element content of clinopyroxene. Lithos 188:3–14

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and Barometers for Volcanic Systems. In: Putirka K, Tepley F (eds), Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry Mineral Soc of America, vol 69, pp 61–120

  • Raffone N, Chazot G, Pin C, Vannucci R, Zanneti A (2009) Metasomatism in the lithospheric mantle beneath Middle Atlas (Morocco) and the origin of Fe and Mg-rich wehrlites. J Petrol 50:197–249

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petorology, mineral and isotope geochemistry of the external liguride peridotites (Northern Apennines, Italy). J Petrol 36:81–105

    Article  Google Scholar 

  • Ringwood AE (1991) Phase transformation and their bearing on the constitution and dynamics of the mantle. Geochim Cosmochem Acta 55:2083–2110

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–475

    Article  Google Scholar 

  • Rudnick RL, Barth M, Horn I, Liu Y, McDonough WF (2000) Rutile-bearing refractory eclogites: missing link between continents and depleted mantle. Science 287:278–281

    Article  Google Scholar 

  • Rudnick RL, Gao S, Ling W, Liu Y, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos 77:609–637

    Article  Google Scholar 

  • Schäfer FN, Foley SF (2002) The effect of crystal orientation on the wetting behavior of silicate melts on the surfaces of spinel peridotite minerals. Contrib Mineral Petrol 143:254–261

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Song Y, Frey FA (1989) Geochemistry of peridotite xenoliths in basalt from Hannouba, Eastern China: implications for subcontinental mantle heterogeneity. Geochim Cosmochim Acta 53:97–113

    Article  Google Scholar 

  • Stolz AJ, Davies GR (1988) Chemical and isotopic evidence from spinel lherzolite xenoliths for episodic metasomatism of the upper mantle beneath Southeast Australia. J Petrol Special Lithosphere Issue 1:303–330

    Google Scholar 

  • Suh CE, Sparks RSJ, Fitton JG, Ayonghe SN, Annen C, Nana R, Luckman A (2003) The 1999 and 2000 eruptions of Mt Cameroon: eruption behaviour and petrochemistry of lava. Bull Volcanol 65:267–281

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematic of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds). Magmatism in the Ocean Basins, Geol Soc Special Publication, vol 42, pp 313–345

  • Takazawa E, Frey FA, Shimizu N, Obata M (2000) Whole rock compositional variations in an upper mantle peridodite (Horoman, Hokkaido, Japan): are they consistent with a partial melting process? Geochim Cosmochim Acta 64:695–716

    Article  Google Scholar 

  • Tamen J, Nkoumbou C, Reusser E, Tchoua F (2015) Petrology and geochemistry of mantle xenoliths from the Kapsiki Plateau (Cameroon volcanic Line): implications for lithospheric upwelling. J Afr Earth Sci 101:119–134

    Article  Google Scholar 

  • Tang YJ, Zhang HF, Ying JF, Su BX (2013) Widespread refertilization of cratonic and circum-cratonic lithospheric mantle. Earth Sci Rev 118:45–68

    Article  Google Scholar 

  • Tchameni R, Pouclet A, Penaye J, Ganwa AA, Toteu SF (2006) Petrography and geochemistry of the Ngaoundéré Pan-African granitoids in Central North Cameroon: implications for their sources and geological setting. J Afr Earth Sci 44:511–529

    Article  Google Scholar 

  • Teitchou M, Grégoire M, Dantas C, Tchoua FM (2007) Le manteau supérieur à l’aplomb de la plaine de Kumba (Ligne du Cameroun), d’après les enclaves de péridotites à spinelle dans les laves basaltique. Comptes Rendus Géosci 339:101–109

    Article  Google Scholar 

  • Teitchou M, Grégoire M, Temdjim R, Ghogomu RT, Ngwa C, Aka FT (2011) Mineralogical and geochemical fingerprints of mantle metasomatism beneath Nyos volcano (Cameroon Volcanic Line). Geol Soc Am Spec Paper 47:193–210

    Google Scholar 

  • Temdjim R (2012) Ultramafic xenoliths from Lake Nyos area, Cameroon volcanic line, West-central Africa: petrography, mineral chemistry, equilibration conditions and metasomatic features. Chem Erde 72:39–60

    Article  Google Scholar 

  • Temdjim R, Njillah IK, Kamgam P, Nkoumbou P (2004) Données nouvelles sur les laves felsiques de Ngaoundéré (Adamaoua, Ligne du Cameroun): Chronologie et pétrologie. Afr J Sci Techn Sci Eng Ser 5:113–123

    Google Scholar 

  • Temdjim R, Notsa WGD, Njilah KI, Hébert V (2010) Kélyphitisation des grenats des pyroxénites du maar de basaltique de Youkou, Ngaoundéré-Est (Adamaoua-Cameroun). Annexe Faculté des Sciences Université de Yaoundé I, Série. Sciences Terre 38:1–16

    Google Scholar 

  • Tiepolo M, Oberti R, Zanetti A, Vannucci R, Foley SF (2007) Trace element partitioning between amphibole and silicate melt. Rev Mineral Geochem 67:417–452

    Article  Google Scholar 

  • Toteu SF, Van Schmus WR, Penaye J, Michard A (2001) New U-Pb and Sm-Nd data from north-central Cameroon and its bearing on the pre-Pan African history of central Africa. Precambr Res 108:45–73

    Article  Google Scholar 

  • Ulrich M, Picard C, Guillot S, Chauvel C, Cluzel D, Meffre S (2010) Multiple melting stages and refertilization as indicators for ridge to subduction formation: The New Caledonia ophiolite. Lithos 115:223–236

    Article  Google Scholar 

  • Wallace ME, Green DH (1991) The effect of bulk rock composition on the stability of amphibole in the upper mantle: implications for solidus positions and mantle metasomatism. Mineral Petrol 44:1–19

    Article  Google Scholar 

  • Wandji P, Tsafack JPF, Bardintzeff JM, Nkouathio DG, Kagou DA, Bellon H, Guillou H (2009) Xenoliths of dunites, wehrlites and clinopyroxenites in the basanites from Batoke volcanic cone (Mount Cameroon, Central Africa): petrogenetic implications. Mineral Petrol 96:81–98

    Article  Google Scholar 

  • Wells PRA (1977) Pyroxene thermometry simple and complex systems. Contrib Mineral Petrol 62:129–139

    Article  Google Scholar 

  • Will TM, Schmädicke E, Frimmel HE (2010) Deep solid-state equilibration and deep melting of plagioclase-free spinel peridotite from the slow-spreading Mid-Atlantic Ridge, ODP Leg 153. Mineral Petrol 100:185–200

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spine1 peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Zhang HF, Goldstein SL, Zhou XH, Sun M, Cai Y (2009) Comprehensive refertilization of the lithospheric mantle beneath the North China Craton: further Os–Sr–Nd isotopic constraints. J Geo Soc London 166:249–259

    Article  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the German Academic Exchange Organization DAAD (Deutscher Akademischer Austauschdienst) for financial support in the mineralogical and geochemical data acquisition as well as the research stay of one of the authors (Robert Temdjim) at the Institute of Geosciences of the Johannes Gutenberg University of Mainz. The constructive and useful remarks of the two anonymous reviewers who helped to improve the manuscript are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Merlin Patrick Wagsong Njombie.

Additional information

Communicated by Hans Keppler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 111 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Njombie, M.P.W., Temdjim, R. & Foley, S.F. Petrology of spinel lherzolite xenoliths from Youkou volcano, Adamawa Massif, Cameroon Volcanic Line: mineralogical and geochemical fingerprints of sub-rift mantle processes. Contrib Mineral Petrol 173, 13 (2018). https://doi.org/10.1007/s00410-018-1438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-018-1438-5

Keywords

Navigation