Skip to main content

Advertisement

Log in

Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 4: Plagioclase, orthopyroxene, clinopyroxene, glass geobarometer, and application to Mt. Ruapehu, New Zealand

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

A new phase equilibria geobarometer determines magmatic storage and crystallization conditions, including pressure, temperature, oxygen fugacity (\({f_{{{\text{o}}_2}}}\)), and the presence of a fluid phase for glass-bearing rocks containing the assemblage plagioclase + pyroxene(s). This newly developed geobarometer can better constrain crystallization conditions of shallow (< 500 MPa; <~ 20 km), glass-bearing andesites to dacites. The geobarometer utilizes rhyolite-MELTS to determine crystallization conditions in natural pumice and scoria samples. The validity of the geobarometer is tested by comparing it to results from experiments. Uncertainties are assessed using Monte Carlo simulations. We apply the geobarometer to the plag + opx + cpx-bearing system of Mt. Ruapehu, in the southern Taupo Volcanic Zone, New Zealand. The samples from Mt. Ruapehu are tested from ~ 5 to ~ 400 MPa and from super-liquidus to 90% crystalline (~ 1200 to ~ 700 °C). Mt. Ruapehu serves as a methodological testing ground for the geobarometer, and results from our geobarometer agree with recent Mt. Ruapehu studies. Results show a distribution of crystallization pressures ranging from 50 to 150 MPa (~ 2.0 to 5.9 km) for different eruptions, with modes of 110 MPa (~ 4.3 km) and 130 MPa (~ 5.1 km). These are consistent with field interpretations of different eruptive styles based on juvenile clast textures and previous knowledge of the magma plumbing system. Mt. Ruapehu magmas are fluid saturated, with \({f_{{{\text{o}}_2}}}\) of ΔQFM ~ + 1 (NNO).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Adapted from Cowlyn (2016)

Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Baker LL, Rutherford MJ (1996) The effect of dissolved water on the oxidation state of silicic MELTS. Geochim Cosmochim Acta 60:2179–2187

    Article  Google Scholar 

  • Bégué F, Gualda GAR, Ghiorso MS et al (2014) Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 2: application to Taupo Volcanic Zone rhyolites. Contrib to Miner Pet 168:1–16. https://doi.org/10.1007/s00410-014-1082-7

    Google Scholar 

  • Blundy JD, Cashman KV (2008) Petrologic reconstruction of magmatic system variables and processes. Rev Miner Geochem 69:179–239. https://doi.org/10.2138/rmg.2008.69.6

    Article  Google Scholar 

  • Blundy JD, Wood BJ (1991) Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate MELTS, and hydrothermal solutions. Geochim Cosmochim Acta 55:193–209. https://doi.org/10.1016/0016-7037(91)90411-W

    Article  Google Scholar 

  • Bryan SE, Ukstins Peate I, Peate DW et al (2010) The largest volcanic eruptions on Earth. Earth Sci Rev 102:207–229. https://doi.org/10.1016/j.earscirev.2010.07.001

    Article  Google Scholar 

  • Carmichael ISE, Nicholls J (1967) Iron–titanium oxides and oxygen fugacities in volcanic rocks. J Geophys Res 72:4665–4687. https://doi.org/10.1029/JZ072i018p04665

    Article  Google Scholar 

  • Cole JW (1990) Structural control and origin of volcanism in the Taupo Volcanic Zone, New Zealand. Bull Volcanol 52:445–459

    Article  Google Scholar 

  • Cowlyn JD (2016) Pyroclastic density currents at Ruapehu volcano; New Zealand. PhD Dissertation, University of Canterbury

  • Dingwell DB (1996) Volcanic dilemma: flow or blow? Science 273:1054–1055. https://doi.org/10.1126/science.273.5278.1054

    Article  Google Scholar 

  • Donoghue SL, Gamble JA, Palmer AS, Stewart RB (1995a) Magma mingling in an andesite pyroclastic flow of the Pourahu Member, Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 68:177–191

    Article  Google Scholar 

  • Donoghue SL, Neall VE, Palmer AS (1995b) Stratigraphy and chronology of late quaternary andesitic tephra deposits, Tongariro Volcanic Centre, New Zealand. J R Soc New Zeal 25:115–206

    Article  Google Scholar 

  • Donoghue SL, Neall VE, Palmer AS, Stewart RB (1997) The volcanic history of Ruapehu during the past 2 millennia based on the record of Tufa Trig tephras. Bull Volcanol 59:136–146. https://doi.org/10.1007/s004450050181

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib to Miner Pet 154:429–437. https://doi.org/10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Gamble JA, Wood CP, Price RC et al (1999) A fifty year perspective of magmatic evolution on Ruapehu Volcano, New Zealand: verification of open system behaviour in an arc volcano. Earth Planet Sci Lett 170:301–314

    Article  Google Scholar 

  • Gamble JA, Price RC, Smith IEM et al (2003) 40Ar/39Ar geochronology of magmatic activity, magma flux and hazards at Ruapehu volcano, Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 120:271–287. https://doi.org/10.1016/S0377-0273(02)00407-9

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two-oxide geothermometer and oxygen-barometer. Am J Sci 308:957–1039

    Article  Google Scholar 

  • Ghiorso MS, Gualda GAR (2015a) Chemical thermodynamics and the study of magmas. Encycl Volcanoes 143–161. https://doi.org/10.1016/B978-0-12-385938-9.00006-7

  • Ghiorso MS, Gualda GAR (2015b) An H2O–CO2 mixed fluid saturation model compatible with rhyolite-MELTS. Contrib to Miner Petrol. https://doi.org/10.1007/s00410-015-1141-8

    Google Scholar 

  • Ghiorso MS, Kress VC (2004) An equation of state for silicate MELTS. II. Calibration of volumetric properties at 105 Pa. Am J Sci 304:679–751. https://doi.org/10.2475/ajs.304.8-9.679

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1991) Fe–Ti oxide geothermometry: thermodynamic formulation and the estimation of intensive variables in silicic magmas. Contrib Miner Petrol 108:485–510

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134. https://doi.org/10.1016/j.epsl.2008.03.038

    Article  Google Scholar 

  • Graham IJ, Hackett WR (1987) Petrology of calc-alkaline lavas from Ruapehu volcano and related vents, Taupo Volcanic Zone, New Zealand. J Petrol 28:531–567

    Article  Google Scholar 

  • Grove TL, Kinzler RJ (1986) Petrogenesis of andesites. Annu Rev Earth Planet Sci 14:417–454

    Article  Google Scholar 

  • Grove TL, Donnelly-Nolan JM, Housh T (1997) Magmatic processes that generated the rhyolite of Glass Mountain, Medicine Lake volcano, N. California. Contrib Miner Petrol 127:205–224

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS (2014) Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 1: principles, procedures, and evaluation of the method. Contrib Miner Petrol 168:1–17. https://doi.org/10.1007/s00410-014-1033-3

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS (2015) MELTS-Excel: a microsoft excel-based MELTS interface for research and teaching of magma properties and evolution. Geochem Geophys Geosyst 16:315–324. https://doi.org/10.1002/2014GC005545

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890. https://doi.org/10.1093/petrology/egr080

    Article  Google Scholar 

  • Hackett WR, Houghton BF (1989) A facies model for a quaternary andesitic composite volcano: Ruapehu, New Zealand. Bull Volcanol 51:51–68

    Article  Google Scholar 

  • Hackett WR (1985) Geology and petrology of Ruapehu Volcano and related vents. PhD Dissertation, Victoria University of Wellington

  • Harrison AJ, White RS (2004) Crustal structure of the Taupo Volcanic Zone, New Zealand: stretching and igneous intrusion. Geophys Res Lett 31:2–5. https://doi.org/10.1029/2004GL019885

    Google Scholar 

  • Humphreys MCS, Edmonds M, Klöcking MS (2016) The validity of plagioclase-melt geothermometry for degassing-driven magma crystallization. Am Miner 101:7679–7779. https://doi.org/10.2138/am-2016-5314

    Article  Google Scholar 

  • Ingham MR, Bibby HM, Heise W et al (2009) A magnetotelluric study of Mount Ruapehu volcano, New Zealand. Geophys J Int 179:887–904. https://doi.org/10.1111/j.1365-246X.2009.04317.x

    Article  Google Scholar 

  • Johnson ME, Rutherford MJ (1989) Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California). Geology 17:837–841

    Article  Google Scholar 

  • Kawamoto T (1996) Experimental constraints on differentiation and H2O abundance of calc-alkaline magmas. Earth Planet Sci Lett 144:577–589. https://doi.org/10.1016/S0012-821X(96)00182-3

    Article  Google Scholar 

  • Kent AJR, Darr C, Koleszar AM et al (2010) Preferential eruption of andesitic magmas through recharge filtering. Nat Geosci 9:631–636

    Article  Google Scholar 

  • Kilgour G, Blundy JD, Cashman KV, Mader HM (2013) Small volume andesite magmas and melt–mush interactions at Ruapehu, New Zealand: evidence from melt inclusions. Contrib Miner Petrol 166:371–392. https://doi.org/10.1007/s00410-013-0880-7

    Article  Google Scholar 

  • Kilgour GN, Saunders K, Blundy JD et al (2014) Timescales of magmatic processes at Ruapehu volcano from diffusion chronometry and their comparison to monitoring data. J Volcanol Geotherm Res 288:62–75. https://doi.org/10.1016/j.jvolgeores.2014.09.010

    Article  Google Scholar 

  • Kilgour GN, Mader HM, Blundy JD, Brooker RA (2016) Rheological controls on the eruption potential and style of an andesite volcano: a case study from Mt. Ruapehu, New Zealand. J Volcanol Geotherm Res 327:273–287. https://doi.org/10.1016/j.jvolgeores.2016.08.001

    Article  Google Scholar 

  • Kilinc A, Carmichael ISE, Rivers ML, Sack RO (1983) The ferric-ferrous ratio of natural silicate liquids equilibrated in air. Contrib Miner Petrol 83:136–140

    Article  Google Scholar 

  • Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with an emphasis on density, thermal expansion and compressibility. In: Nicholls J, Russell K (eds) Reviews in mineralogy: modern methods of igneous petrology, vol 24. Mineralogical Society of America, pp 25–64

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Miner 94:494–506. https://doi.org/10.2138/am.2009.3011

    Article  Google Scholar 

  • Lawford J, Smith DR (1995) The effects of temperature and \({f_{{{\text{o}}_2}}}\) on the Al-in-hornblende barometer. Am Miner 80:549–559

    Article  Google Scholar 

  • Liebske C, Behrens H, Holtz F, Lange RA (2003) The influence of pressure and composition on the viscosity of andesitic MELTS. Geochim Cosmochim Acta 67:473–485

    Article  Google Scholar 

  • Lindsley DH (ed) (1991) Oxide minerals: petrologic and magnetic significance. Reviews in mineralogy, vol 25. Mineralogical Society of America, pp 1–509

  • Lindsley DH, Spiedel DH, Nafziger RH (1968) P–T–\({f_{{{\text{o}}_2}}}\) relations for the system Fe–O–SiO2. Am J Sci 266:342–360

    Article  Google Scholar 

  • Lipman PW, Steven TA, Mehnert HH (1970) Volcanic History of the San Juan Mountains, Colorado, as Indicated by Potassium–Argon dating. Geol Soc Am Bull 81:2329–2352. https://doi.org/10.1130/0016-7606(1970)81[2329:VHOTSJ]2.0.CO;2

    Article  Google Scholar 

  • Liu Y, Zhang Y, Behrens H (2005) Solubility of H2O in rhyolitic MELTS at low pressures and a new empirical model for mixed H2O–CO2 solubility in rhyolitic MELTS. J Volcanol Geotherm Res 143:219–235. https://doi.org/10.1016/j.jvolgeores.2004.09.019

    Article  Google Scholar 

  • Prouteau G, Scaillet B (2003) Experimental Constraints on the origin of the 1991 Pinatubo Dacite. J Petrol 44:2203–2241. https://doi.org/10.1093/petrology/egg075

    Article  Google Scholar 

  • Martel C, Brooker RA, Andújar J et al (2017) Experimental simulations of magma storage and ascent. Springer, Berlin, pp 1–10

    Google Scholar 

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748. https://doi.org/10.1007/s00445-004-0355-9

    Article  Google Scholar 

  • McLeod CL, Davidson JP, Nowell GM, de Silva SL (2012) Disequilibrium melting during crustal anatexis and implications for modeling open magmatic systems. Geology 40:435–438. https://doi.org/10.1130/G33000.1

    Article  Google Scholar 

  • Mo X, Carmichael ISE, Rivers ML, Stebbins J (1982) The partial molar volume of Fe2O3 in multicomponent silicate liquids and the pressure-dependence of oxygen fugacity in magmas. Miner Mag 45:237–245. https://doi.org/10.1180/minmag.1982.045.337.27

    Article  Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Miner Geochem 69:333–362. https://doi.org/10.2138/rmg.2008.69.9

    Article  Google Scholar 

  • Moore G, Carmichael ISE (1998) The hydrous phase equilibria (to 3 kbar) of an andesite and basaltic andesite from western Mexico: constraints on water content and conditions of phenocryst growth. Contrib Miner Petrol 130:304–319

    Article  Google Scholar 

  • Moore G, Righter K, Carmichael ISE (1995) The effect of dissolved water on the oxidation state of iron in natural silicate liquids. Contrib Miner Petrol 120:170–179

    Article  Google Scholar 

  • Moore G, Vennemann T, Carmichael ISE (1998) An empirical model for the solubility of H2O in magmas to 3 kbars. Am Miner 83:36–42

    Article  Google Scholar 

  • Mysen BO (1990) Relationships between silicate melt structure and petrologic processes. Earth Sci Rev 27:281–365

    Article  Google Scholar 

  • Mysen BO, Virgo D, Neumann E-R, Seifert FA (1985) Redox equilibria and the structural states of ferric and ferrous iron in MELTS in the system CaO–MgO–Al2O3–SiO2–FeO: relationships between redox equilibria, melt structure and liquidus phase equilibria. Am Miner 70:317–331

    Google Scholar 

  • Nakagawa M, Wada K, Thordarson T et al (1999) Petrologic investigations of the 1995 and 1996 eruptions of Ruapehu volcano, New Zealand: formation of discrete and small magma pockets and their intermittent discharge. Bull Volcanol 61:15–31. https://doi.org/10.1007/s004450050259

    Article  Google Scholar 

  • Nakagawa M, Wada K, Wood CP (2002) Mixed Magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu Volcano, New Zealand. J Petrol 43:2279–2303. https://doi.org/10.1093/petrology/43.12.2279

    Article  Google Scholar 

  • Pamukcu AS, Gualda GAR, Ghiorso MS et al (2015) Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS, Part 3: application to the peach spring tuff (Arizona, California, Nevada, USA). Contrib Miner Petrol. https://doi.org/10.1007/s00410-015-1122-y

    Google Scholar 

  • Pardo N, Cronin SJ, Palmer AS, Németh K (2011) Reconstructing the largest explosive eruptions of Mt. Ruapehu, New Zealand: lithostratigraphic tools to understand subplinian–plinian eruptions at andesitic volcanoes. Bull Volcanol 74:617–640. https://doi.org/10.1007/s00445-011-0555-z

    Article  Google Scholar 

  • Pardo N, Cronin SJ, Wright HMN et al (2014) Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu. Bull Volcanol. https://doi.org/10.1007/s00445-014-0822-x

    Google Scholar 

  • Pardo Villaveces N (2012) Andesitic Plinian eruptions at Mt. Ruapehu (New Zealand): from lithofacies to eruption dynamics. Massey University

  • Powell R, Holland T (1999) Relating formulations of the thermodynamics of mineral solid solutions: activity modeling of pyroxenes, amphiboles, and micas. Am Miner 84:1–14

    Article  Google Scholar 

  • Price RC, George R, Gamble JA et al (2007) U–Th–Ra fractionation during crustal-level andesite formation at Ruapehu volcano, New Zealand. Chem Geol 244:437–451. https://doi.org/10.1016/j.chemgeo.2007.07.001

    Article  Google Scholar 

  • Price RC, Gamble JA, Smith IEM et al (2012) The anatomy of an andesite volcano: a time-stratigraphic study of andesite petrogenesis and crustal evolution at Ruapehu Volcano, New Zealand. J Petrol 53:2139–2189. https://doi.org/10.1093/petrology/egs050

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Miner Geochem 69:61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tiber and the Snake River Plain, Idaho. Am Miner 88:1542–1554. https://doi.org/10.2138/am-2017-5704

    Article  Google Scholar 

  • Reubi O, Blundy JD (2009) A dearth of intermediate MELTS at subduction zone volcanoes and the petrogenesis of arc andesites. Nature 461:1269–1274. https://doi.org/10.1038/nature08510

    Article  Google Scholar 

  • Rudnick RL (1995) Making continental crust. Nature 378:571–578

    Article  Google Scholar 

  • Sack RO, Carmichael ISE, Rivers ML, Ghiorso MS (1980) Ferric-ferrous equilibria in natural silicate liquids at 1 Bar. Contrib Miner Petrol 75:369–376

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contrib Miner Petrol 110:304–310

    Article  Google Scholar 

  • Thomas WM, Ernst WG (1990) The aluminum content of hornblende in calc-alkaline granitic rocks: a mineralogic barometer calibrated experimentally to 12 kbars. Geochem Soc Spec Publ Fluid Mine 2:59–63

  • Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral—melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  • Vander Auwera J, Longhi J (1994) Experimental study of a jotunite (hypersthene monzodiorite): constrains on the parent magma composition and crystallization conditions (P, T, \({f_{{{\text{o}}_2}}}\)) of the Bjerkreim-Sokndal layered intrusion (Norway). Contrib Miner Petrol 118:60–78

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Miner Petrol 152:743–754. https://doi.org/10.1007/s00410-006-0132-1

    Article  Google Scholar 

  • Waters LE, Lange RA (2015) An updated calibration of the plagioclase-liquid hygrometer–thermometer applicable to basalts through rhyolites. Am Miner 100:2172–2184. https://doi.org/10.2138/am-2015-5232

    Article  Google Scholar 

  • Wilson CJN, Houghton BF, Mcwilliams MO et al (1995) Volcanic and structural evolution of Taupo Volcanic Zone, New Zealand: a review. J Volcanol Geotherm Res 68:1–28

    Article  Google Scholar 

Download references

Acknowledgements

Funding support provided by NSF grants EAR-1151337 to Gualda and EAR-1321924 to Ghiorso, by University of Canterbury Doctoral Scholarship, the University of Canterbury Mason Trust Fund, a Project Tongariro Memorial Award and a Royal Society of New Zealand International Mobility Fund Grant (IMF14-02) to Cowlyn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia J. Harmon.

Additional information

Communicated by Timothy L. Grove.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 91 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harmon, L.J., Cowlyn, J., Gualda, G.A.R. et al. Phase-equilibrium geobarometers for silicic rocks based on rhyolite-MELTS. Part 4: Plagioclase, orthopyroxene, clinopyroxene, glass geobarometer, and application to Mt. Ruapehu, New Zealand. Contrib Mineral Petrol 173, 7 (2018). https://doi.org/10.1007/s00410-017-1428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1428-z

Keywords

Navigation