Skip to main content

Advertisement

Log in

Partial melting of secondary pyroxenite at 1 and 1.5 GPa, and its role in upwelling heterogeneous mantle

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allègre CJ, Turcotte DL (1986) Implications of a two-component marble-cake mantle. Nature 323:123–127

    Article  Google Scholar 

  • Asimow PD, Stolper EM (1999) Steady-state mantle-melt interactions in one dimension: equilibrium, transport and melt focusing. J Petrol 40:475–494

    Article  Google Scholar 

  • Asimow PD, Hirschmann MM, Stolper EM (2001) Calculation of peridotite partial melting from thermodynamic models of minerals and melts, IV. Adiabatic decompression and the composition and mean properties of mid-ocean ridge basalts. J Petrol 42:963–998

    Article  Google Scholar 

  • Baker MB, Stolper EM (1994) Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim Cosmochim Acta 58:2811–2827

    Article  Google Scholar 

  • Baker MB, Hirschmann MM, Ghiorso MS, Stolper EM (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311

    Article  Google Scholar 

  • Blundy JD, Falloon TJ, Wood BJ, Dalton JA (1995) Sodium partitioning between clinopyroxene and silicate melts. J Geophys Res 100:15501–15515

    Article  Google Scholar 

  • Bodinier JL, Menzies MA, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320

    Article  Google Scholar 

  • Bodinier J-L, Garrido CJ, Chanefo I, Bruguier O, Gervilla F (2008) Origin of pyroxenite-peridotite veined mantle by refertilization reactions: evidence from the Ronda peridotite (Southern Spain). J Petrol 49:999–1025

    Article  Google Scholar 

  • Borghini G, Fumagalli P, Rampone E (2010) The stability of plagioclase in the upper mantle: subsolidus experiments on fertile and depleted lherzolite. J Petrol 51:229–254

    Article  Google Scholar 

  • Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, Goldstein S (2013) Meter-scale Nd isotopic heterogeneity in pyroxenite-bearing Ligurian peridotites encompasses global-scale upper mantle variability. Geology 41:1055–1058

    Article  Google Scholar 

  • Borghini G, Rampone E, Zanetti A, Class C, Cipriani A, Hofmann AW, Goldstein S (2016) Pyroxenite layersin the Northern Apennines upper mantle (Italy)—generation by pyroxenite melting and melt infiltration. J Petrol. doi:10.1093/petrology/egv074

    Google Scholar 

  • Brown EL, Lesher CE (2016) REEBOX PRO: a forward model simulating melting of thermally and lithologically variable upwelling mantle. Geochem Geophys Geosyst 17:3929–3968. doi:10.1002/2016GC006579

    Article  Google Scholar 

  • Collier ML, Kelemen PB (2010) The case for reactive crystallization at mid-ocean ridges. J Petrol 51:1913–1940

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM (2007) A modified iterative sandwich method for determination of near-solidus partial melt compositions. II. Application to determination of near-solidus melt compositions of carbonated peridotite. Contrib Mineral Petrol 154:647–661

    Article  Google Scholar 

  • Delavault H, Chauvel C, Sobolev A, Batanova V (2015) Combined petrological, geochemical and isotopic modeling of a plume source: example of Gambier Island, Pitcairn chain. Earth Planet Sci Lett 426:23–35

    Article  Google Scholar 

  • Falloon TJ, Green DH, Danyushevsky LV, Faul UH (1999) Peridotite melting at 1.0 and 1.5 GPa: an experimental evaluation of techniques using diamond aggregates and mineral mixes for determination of near-solidus melts. J Petrol 40:1343–1375

    Article  Google Scholar 

  • Falloon TJ, Green DH, Danyushevsky LV, McNeill AW (2008) The composition of near-solidus partial melts of fertile peridotite at 1 and 1.5 GPa, implications for the petrogenesis of MORB. J Petrol 49:591–616

    Article  Google Scholar 

  • Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518

    Article  Google Scholar 

  • Garrido CJ, Bodinier J-L (1999) Diversity of mafic rocks in the Ronda peridotite: evidence for pervasive melt–rock reaction during heating of subcontinental lithosphere by upwelling asthenosphere. J Petrol 40:729–754

    Article  Google Scholar 

  • Green DH, Falloon TJ (1998) Pyrolite: a ringwood concept and its current expression. In: Jackson I (ed) The earth’s mantle. Cambridge University Press, Cambridge, pp 311–378

    Google Scholar 

  • Green DH, Falloon TJ, Eggins SM, Yaxley GM (2001) Primary magmas and mantle temperatures. Eur J Mineral 13:437–451

    Article  Google Scholar 

  • Guerenko AA, Geldmacher J, Hoernle KA, Sobolev AV (2013) A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: insights from olivine. Lithos 170–171:224–238

    Article  Google Scholar 

  • Gysi AP, Jagoutz O, Schmidt MW, Targuisti K (2011) Petrogenesis of pyroxenites and melt infiltrations in the ultramafic complex of Beni Boussera, Northern Morocco. J Petrol 52:1676–1735

    Article  Google Scholar 

  • Herzberg C (2006) Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature 444:605–609

    Article  Google Scholar 

  • Herzberg C (2011) Identification of source lithology in the Hawaiian and Canary Islands: implications for origins. J Petrol 52:113–146

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9(9), Q09001. doi:10.1029/2008GC002057

  • Herzberg C, Asimow PD, Arndr N, Niu Y, Lesher CM, Fitton JG, Cheadle MJ, Saunders AD (2003) Temperature in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochem Geophys Geosyst 8(2). doi:10.1029/2006GC001390

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:477–489

    Article  Google Scholar 

  • Hirschmann MM (2000) Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem Geophys Geosyst 1(10):1042. doi:10.1029/2000GC000070

    Article  Google Scholar 

  • Hirschmann MM, Stolper EM (1996) A possible role for garnet pyroxenite in the origin of the ‘garnet signature’ in MORB. Contrib Mineral Petrol 124:185–208

    Article  Google Scholar 

  • Hirschmann MM, Asimow PD, Ghiorso MS, Stolper EM (1999) Calculation of peridotite partial melting from thermodynamic models of minerals and melts. III. Controls on isobaric melt production and the effect of water on melt production. J Petrol 40:831–851

    Article  Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Article  Google Scholar 

  • Hofmann AW (2007) Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements. In: Carlson RW, Holland HD, Turekian KK (eds) Treatise on Geochemistry, the mantle and core, vol 2. Elsevier, Oxford, pp 61–101

    Google Scholar 

  • Jackson MG, Dasgupta R (2008) Composition of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth Planet Sci Lett 276:175–186

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Salters VJM (1995) Extraction of mid-ocean ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  Google Scholar 

  • Keshav S, Gudfinnsson GH, Sen G, Fei Y (2004) High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet Sci Lett 223:365–379

    Article  Google Scholar 

  • Kinzler RJ (1997) Melting of mantle peridotite at pressures approaching the spinel to garnet transition: application to mid-ocean ridge basalt petrogenesis. J Geophys Res 102:853–874

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM (2001) Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol 142:347–360

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM (2006) Partial melting experiments of bimineralic eclogite and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. Earth Planet Sci Lett 249:188–199

    Article  Google Scholar 

  • Kogiso T, Hirose K, Takahashi E (1998) Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth Planet Sci Lett 162:45–61

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Pertermann M (2004a) High-pressure partial melting of mafic lithologies in the mantle. J Petrol 45:2407–2422

    Article  Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners W (2004b) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2009a) An experimental study of pyroxenite partial melts at 1 and 1.5 GPa: implications for the major-element composition of mid-ocean ridge basalts. Earth Planet Sci Lett 288:335–347

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2009b) An experimental study of focused magma transport and basalt-peridotite interactions beneath mid-ocean ridges: implications for the generation of primitive MORB compositions. Contrib Mineral Petrol 157:429–451

    Article  Google Scholar 

  • Lambart S, Laporte D, Provost A, Schiano P (2012) Fate of pyroxenite-derived melts in the peridotitic mantle: thermodynamic and experimental constraints. J Petrol 53:451–476

    Article  Google Scholar 

  • Lambart S, Laporte D, Schiano P (2013) Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review of the experimental constraints. Lithos 160–161:14–36

    Article  Google Scholar 

  • Lambart S, Baker MB, Stolper EM (2016) The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J Geophys Res 121:5708–5735

    Article  Google Scholar 

  • Langmuir CH, Klein EM, Plank T (1992) Petrological systematics of mid-ocean ridge basalts: constraints on melt generation beneath ocean ridges. Am Geophys Un Monogr 71:183–280

    Google Scholar 

  • Laporte D, Toplis M, Seyler M, Devidal JL (2004) A new experimental technique for extracting liquids from peridotite at very low degrees of melting: application to partial melting of depleted peridotite. Contrib Mineral Petrol 146:463–484

    Article  Google Scholar 

  • Le Roux PJ, Le Roex AP, Schilling J-G, Shimizu N, Perkins WW, Pearce NJG (2002) Mantle heterogeneity beneath the southern Mid-Atlantic Ridge: trace element evidence for contamination of ambient asthenospheric mantle. Earth Planet Sci Lett 203:479–498

    Article  Google Scholar 

  • Libourel G (1999) Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contrib Mineral Petrol 136:63–80

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2012) Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth Planet Sci Lett 329–330:97–108

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2013) Reactive infiltration of MORB-eclogite-derived carbonated silicate melt into fertile peridotite at 3 GPa and genesis of alkali magmas. J Petrol 54:2267–2300

    Article  Google Scholar 

  • Mallik A, Dasgupta R (2014) Effect of variable CO2 on eclogite-derived andesite and lherzolite reaction at 3 GPa—Implications for mantle source characteristics of alkali ocean island basalts. Geochem Geophys Geosyst 15:1533–1557

    Article  Google Scholar 

  • Marchesi C, Garrido CJ, Bosch D, Bodinier J-L, Gervilla F, Hidas K (2013) Mantle refertilization by melts of crustal-derived garnet pyroxenite: evidence from the Ronda peridotite massif, southern Spain. Earth Planet Sci Lett 362:66–75

    Article  Google Scholar 

  • Médard E, Schmidt MW, Schiano P, Ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47:481–504

    Article  Google Scholar 

  • Médard E, McCammon CA, Barr JA, Grove TL (2008) Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am Mineral 93:1838–1844

    Article  Google Scholar 

  • Montanini A, Tribuzio R (2015) Evolution of recycled crust within the mantle: constraints from the garnet pyroxenites of the External Ligurian ophiolites (northern Apennines, Italy). Geology 43:911–914

    Article  Google Scholar 

  • Mukasa SB, Shervais JW (1999) Growth of sub-continental lithosphere: evidence from repeated injections in the Balmuccia lherzolite massif, Italian Alps. Lithos 48:287–316

    Article  Google Scholar 

  • O’Hara MJ (1972) Data reduction and projection schemes for complex compositions. In: EaM U (ed) Progress in experimental petrology. NERC, Manchester, pp 103–126

    Google Scholar 

  • Paulick H, Mueker C, Schluth S (2010) The influence of small-scale mantle heterogeneities on Mid-Ocean Ridge volcanism: Evidence from the southern Mid-Atlantic Ridge (7 degrees 30’S to 11 degrees 30’S) and Ascension Island. Earth Planet Sci Lett 296:299–310

    Article  Google Scholar 

  • Pearson DG, Davies GR, Nixon PH (1993) Geochemical constraints on the petrogenesis of diamond facies pyroxenites from the Beni Bousera peridotite massif, North Morocco. J Petrol 34:125–172

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003a) Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral–melt partitioning of major elements at 2–3 GPa. J Petrol 44:2173–2201

    Article  Google Scholar 

  • Pertermann M, Hirschmann MM (2003b) Partial melting on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J Geophys Res 108(B2):2125

    Article  Google Scholar 

  • Phipps Morgan J (2001) Thermodynamics of pressure release melting of a veined plum pudding mantle. Geochem Geophys Geosyst 2:2000GC000049

    Article  Google Scholar 

  • Pickering-Witter J, Johnson AD (2000) The effects of variable bulk composition on the melting systematics of fertile peridotitic assemblages. Contrib Mineral Petrol 140:190–211

    Article  Google Scholar 

  • Pilet S, Baker MB, Stolper EM (2008) Metasomatized lithosphere and the origin of alkaline lavas. Science 320:916

    Article  Google Scholar 

  • Presnall DC, Gudfinnsson GH, Walter MJ (2002) Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim Cosmochim Acta 66:2073–2090

    Article  Google Scholar 

  • Prytulak J, Elliot T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Article  Google Scholar 

  • Rampone E, Hofmann AW, Piccardo GB, Vannucci R, Bottazzi P, Ottolini L (1995) Petrology, mineral and isotope geochemistry of the External Liguride peridotites (Northern Apennines, Italy). J Petrol 123:61–76

    Google Scholar 

  • Rivalenti G, Mazzucchelli M, Vannucci R, Hofmann AW, Ottolini L, Obermiller W (1995) The relationship between websterite and peridotite in the Balmuccia peridotite massif (NW Italy) as revealed by trace element variations in clinopyroxene. Contrib Mineral Petrol 121:275–288

    Article  Google Scholar 

  • Robinson JAC, Wood BJ, Blundy JD (1998) The beginning of melting of fertile and depleted peridotite at 1.5 GPa. Earth Planet Sci Lett 155:97–111

    Article  Google Scholar 

  • Rosenthal A, Yaxley GM, Green DH, Hermann J, Kovacs I, Spandler C (2014) Continuous eclogite melting and variable refertilization in upwelling heterogeneous mantle. Sci Rep 4:6099

    Article  Google Scholar 

  • Salters VJM, Dick HJB (2002) Mineralogy of the mid-ocean-ridge basalt source from neodymium isotopic composition of abyssal peridotites. Nature 418:68–72

    Article  Google Scholar 

  • Schwab B, Johnston A (2001) Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol 42:1789–1811

    Article  Google Scholar 

  • Shen Y, Forsyth DW (1995) Geochemical constraints on initial and final depths of melting beneath mid-ocean ridges. J Geophys Res 100:2211–2237

    Article  Google Scholar 

  • Shorttle O, Maclennan J (2011) Compositional trends of Icelandic basalts: implications for short-length scale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst 12:Q11008

    Article  Google Scholar 

  • Shorttle O, Maclennan J, Lambart S (2014) Quantifying lithological variability in the mantle. Earth Planet Sci Lett 395:24–40

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian IK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Kuzmin DV, Yaxley GM, Arndt NT, Chung S-L, Danyushevsky LV, Elliott T, Frey FA, Garcia MO, Gurenko AA, Kamenetsky VS, Kerr AC, Krivolutskaya NA, Matvienkov VV, Nikogosian IK, Rocholl A, Sigurdsson IA, Sushchevskaya NM, Teklay M (2007) The amount of recycled crust in sources of mantle-derived melts. Science 316:412–417

    Article  Google Scholar 

  • Sorbadere F, Medard E, Laporte D, Schiano P (2013) Experimental melting of hydrous peridotite-pyroxenite mixed sources: constraints on the genesis of silica-undersaturated magmas beneath volcanic arcs. Earth Planet Sci Lett 384:42–56

    Article  Google Scholar 

  • Spandler C, Yaxley GM, Green DH, Rosenthal A (2008) Phase relations and melting of anhydrous K-bearing eclogite from 1200 to 1600°C and 3 to 5 GPa. J Petrol 49:771–795

    Article  Google Scholar 

  • Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73:218–238

    Article  Google Scholar 

  • Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39

    Article  Google Scholar 

  • Ulmer P, Luth RW (1991) The graphite fluid equilibrium in P, T, fO2 space: an experimental determination to 30 kbar and 1600°C. Contrib Mineral Petrol 106:265–272

    Article  Google Scholar 

  • Varfalvy V, Herbert R, Bedard JH (1996) Interactions between melt and upper-mantle peridotites in the North Arm Mountain Massif, Bay of Islands Ophiolite, Newfoundland, Canada: implications for the genesis of boninites and related magmas. Chem Geol 129:71–90

    Article  Google Scholar 

  • Villiger S, Ulmer P, Müntener O (2007) Equilibrium and fractional crystallization experiments at 0.7 GPa; the effect of pressure on phase relations and liquid compositions of tholeiitic magmas. J Petrol 48:159–184

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Wasylenki LE, Baker MB, Kent AJR, Stolper EM (2003) Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J Petrol 44:1163–1191

    Article  Google Scholar 

  • Yasuda A, Fujii T, Kurita K (1994) Melting phase relations of an anhydrous mid-ocean ridge basalt from 3 to 20 GPa: implications for the behavior of subducted oceanic crust in the mantle. J Geophys Res 99:9401–9414

    Article  Google Scholar 

  • Yaxley GM (2000) Experimental study of the phase and melting relations of homogeneous basalt + peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol 139:326–338

    Article  Google Scholar 

  • Yaxley GM, Green DH (1998) Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt 78:243–255

    Google Scholar 

  • Yaxley GM, Sobolev AV (2007) High-pressure partial melting of gabbro and its role in the Hawaiian magma source. Contrib Mineral Petrol 154:371–383

    Article  Google Scholar 

  • Zanetti A, Vannucci R, Bottazzi P, Oberti R, Ottolini L (1996) Infiltration metasomatism at Lherz as monitored by systematic ion- microprobe investigations close to a hornblendite vein. Chem Geol 134:113–133

    Article  Google Scholar 

  • Zhang GL, Zong CL, Yin XB et al (2012) Geochemical constraints on a mixed pyroxenite-peridotite source fro East Pacific Rise basalts. Chem Geol 330:176–187

    Article  Google Scholar 

Download references

Acknowledgements

The manuscript greatly benefited of insightful reviews by two anonymous referees. We also thank the fruitful comments and editorial handling by Othmar Müntener. Constructive criticism by Anika Mallik improved an early version of the paper. We are grateful to Sarah Lambart for discussion on modeling. Andrea Risplendente is thanked for technical assistance during the work by electron microprobe. This work was financially supported by the Italian Ministry of Education, University and Research (MIUR) [PRIN-2015C5LN35] “Melt rock reaction and melt migration in the MORB mantle through combined natural and experimental studies”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Borghini.

Additional information

Communicated by Othmar Müntener.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borghini, G., Fumagalli, P. & Rampone, E. Partial melting of secondary pyroxenite at 1 and 1.5 GPa, and its role in upwelling heterogeneous mantle. Contrib Mineral Petrol 172, 70 (2017). https://doi.org/10.1007/s00410-017-1387-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-017-1387-4

Keywords

Navigation