Skip to main content

Advertisement

Log in

Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence)

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

North Tanzanian Divergence is the first stage of continental break-up of East African Rift (<6 Ma) and is one of the most concentrated areas of carbonatite magmatism on Earth, with singular Oldoinyo Lengai and Kerimasi volcanoes. Hanang volcano is the southernmost volcano in the North Tanzanian Divergence and the earliest stage of rift initiation. Hanang volcano erupted silica-undersaturated alkaline lavas with zoned clinopyroxene, nepheline, andradite-schorlomite, titanite, apatite, and pyrrhotite. Lavas are low MgO-nephelinite with low Mg# and high silica content (Mg# = 22.4–35.2, SiO2 = 44.2–46.7 wt%, respectively), high incompatible element concentrations (e.g. REE, Ba, Sr) and display Nb–Ta fractionation (Nb/Ta = 36–61). Major elements of whole rock are consistent with magmatic differentiation by fractional crystallization from a parental melt with melilititic composition. Although fractional crystallization occurred at 9–12 km and can be considered as an important process leading to nephelinite magma, the complex zonation of cpx (e.g. abrupt change of Mg#, Nb/Ta, and H2O) and trace element patterns of nephelinites recorded magmatic differentiation involving open system with carbonate–silicate immiscibility and primary melilititic melt replenishment. The low water content of clinopyroxene (3–25 ppm wt. H2O) indicates that at least 0.3 wt% H2O was present at depth during carbonate-rich nephelinite crystallization at 340–640 MPa and 1050–1100 °C. Mg-poor nephelinites from Hanang represent an early stage of the evolution path towards carbonatitic magmatism as observed in Oldoinyo Lengai. Paragenesis and geochemistry of Hanang nephelinites require the presence of CO2-rich melilititic liquid in the southern part of North Tanzanian Divergence and carbonate-rich melt percolations after deep partial melting of CO2-rich oxidized mantle source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adam J, Green T (2006) Trace element partitioning between mica—and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 1. Experimental results and the investigation of controls on partitioning behaviour. Contrib Mineral Petrol 152(1):1–17. doi:10.1007/s00410-006-0085-4

    Article  Google Scholar 

  • Albaric J, Perrot J, Déverchère J, Deschamps A, Le Gall B, Ferdinand RW, Petit C, Tiberi C, Sue C, Songo M (2010) Contrasted seismogenic and rheological behaviours from shallow and deep earthquake sequences in the North Tanzanian Divergence, East Africa. J Afr Earth Sci 58(5):799–811. doi:10.1016/j.jafrearsci.2009.09.005

    Article  Google Scholar 

  • Albaric J, Déverchère J, Perrot J, Jakovlev A, Deschamps A (2014) Deep crustal earthquakes in North Tanzania, East Africa: interplay between tectonic and magmatic processes in an incipient rift. Geochem Geophys Geosyst 15(2):374–394. doi:10.1002/2013GC005027

    Article  Google Scholar 

  • Aulbach S, Rudnick RL, McDonough WF (2008) Li-Sr-Nd isotope signatures of the plume and cratonic lithospheric mantle beneath the margin of the rifted Tanzanian craton (Labait). Contrib Mineral Petrol 155(1):79–92. doi:10.1007/s00410-007-0226-4

    Article  Google Scholar 

  • Bagdasaryan GP, Gerasimovskiy VI, Polyakov AI, Gukasyan RK, Vernadskiy VI (1973) Age of volcanic rocks in the rift zones of East Africa. Geochem Int 10(1):66–71

    Google Scholar 

  • Baptiste V, Tommasi A, Vauchez A, Demouchy S, Rudnick RL (2015) Deformation, hydration, and anisotropy of the lithospheric mantle in an active rift: constraints from mantle xenoliths from the North Tanzanian Divergence of the East African Rift. Tectonophysics 639:34–55. doi:10.1016/j.tecto.2014.11.011

    Article  Google Scholar 

  • Behrens H, Misiti V, Freda C, Vetere F (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 C and pressure from 50 to 500 MPa. Am Mineral 94(1):105–120. doi:10.2138/am.2009.2796

    Article  Google Scholar 

  • Bell K, Tilton GR (2001) Nd, Pb and Sr isotopic compositions of East African carbonatites: evidence for mantle mixing and plume inhomogeneity. J Petrol 42(10):1927–1945

    Article  Google Scholar 

  • Bell D, Ihinger P, Rossman G (1995) Quantitative and analysis of trace OH in garnet and pyroxenes. Am Mineral 80:465–474

    Article  Google Scholar 

  • Brey G, Green DH (1977) Systematic study of liquidus phase relations in olivine melilitite + H2O + CO2 at high pressures and petrogenesis of an olivine melilitite magma. Contrib Mineral Petrol 61(2):141–162

    Article  Google Scholar 

  • Brooker RA, Kjarsgaard BA (2011) Silicate–carbonate liquid immiscibility and phase relations in the system SiO2–Na2O–Al2O3–CaO–CO2 at 0.1–2.5 GPa with applications to carbonatite genesis. J Petrol 52(7–8):1281–1305. doi:10.1093/petrology/egq081

    Article  Google Scholar 

  • Bultitude RJ, Green DH (1971) Experimental study of crystal-liquid relationships at high pressures in olivine nephelinite and basanite compositions. J Pet 12(1):121–147

    Article  Google Scholar 

  • Calais E, d’Oreye N, Albaric J, Deschamps A, Delvaux D, Déverchere J, Ebinger C, Ferdinand RW, Kervyn F, Macheyeki AS, Oyen A, Perrot J, Saria E, Smets B, Stamps DS, Wauthier C (2008) Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa. Nature 456(7223):783–787. doi:10.1038/nature07478

    Article  Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235(1):138–160. doi:10.1016/j.chemgeo.2006.06.008

    Article  Google Scholar 

  • Chen H, Xia QK, Ingrin J, Jia ZB, Feng M (2015) Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts, NE China: new constraints from water content. Tectonophysics 650:113–123. doi:10.1016/j.tecto.2014.07.022

    Article  Google Scholar 

  • Church A (1996) The petrology of the Kerimasi carbonatite volcano and the carbonatites of Oldoinyo Lengai with a review of other occurrences of extrusive carbonatites. Ph.D. Thesis, University College of London

  • Craig TJ, Jackson JA, Priestley K, McKenzie D (2011) Earthquake distribution patterns in Africa: their relationship to variations in lithospheric and geological structure, and their rheological implications. Geophys J Int 185(1):403–434. doi:10.1111/j.1365-246X.2011.04950.x

    Article  Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 at 3 GPa and genesis of alkalic ocean island basalts. J Petrol 48(11):2093–2124. doi:10.1093/petrology/egm053

    Article  Google Scholar 

  • Dawson JB (1989) Sodium carbonatite extrusions from Oldoinyo Lengai, Tanzania: implications for carbonatite complex genesis. In: Carbonatites: genesis and evolution. Unwin Hyman London, pp 255–277

  • Dawson JB (1998) Peralkaline nephelinite–natrocarbonatite relationships at Oldoinyo Lengai, Tanzania. J Petrol 39(11–12):2077–2094

    Article  Google Scholar 

  • Dawson JB (2008) The Gregory rift valley and Neogene-recent volcanoes of northern Tanzania. Geological Society, London 33

    Google Scholar 

  • Dawson JB (2012) Nephelinite–melilitite–carbonatite relationships: evidence from Pleistocene-recent volcanism in northern Tanzania. Lithos 152:3–10. doi:10.1016/j.lithos.2012.01.008

    Article  Google Scholar 

  • Dawson JB, Smith JV (1988) Metasomatised and veined upper–mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the Tanzanian sector of the East African Rift Valley. Contrib Mineral Petrol 100(4):510–527

    Article  Google Scholar 

  • Dawson JB, James D, Paslick C, Halliday AM (1997) Ultrabasic potassic low-volume magmatism and continental rifting in north-central Tanzania: association with enhanced heat flow. Russ Geol Geophys 38:69–81

    Google Scholar 

  • de Moor JM, Fischer TP, King PL, Botcharnikov RE, Hervig RL, Hilton DR, Barry PH, Mangasini F, Ramirez C (2013) Volatile-rich silicate melts from Oldoinyo Lengai volcano (Tanzania): implications for carbonatite genesis and eruptive behavior. Earth Planet Sci Lett 361:379–390. doi:10.1016/j.epsl.2012.11.006

    Article  Google Scholar 

  • Denis CM, Alard O, Demouchy S (2015) Water content and hydrogen behaviour during metasomatism in the uppermost mantle beneath Ray Pic volcano (Massif Central, France). Lithos 236:256–274. doi:10.1016/j.lithos.2015.08.013

    Article  Google Scholar 

  • Dumont S, Socquet A, Grandin R, Doubre C, Klinger Y (2016) Surface displacements on faults triggered by slow magma transfers between dyke injections in the 2005–2010 rifting episode at Dabbahu–Manda–Hararo rift (Afar, Ethiopia). Geophys J Int 204(1):399–417. doi:10.1093/gji/ggv449

    Article  Google Scholar 

  • Ebinger CJ, Sleep NH (1998) Cenozoic magmatism throughout east Africa resulting from impact of a single plume. Nature 395(6704):788–791

    Article  Google Scholar 

  • Foley SF (2008) A trace element perspective on Archean crust formation and on the presence or absence of Archean subduction. Geol Soc Am Spec Pap 440:31–50

    Google Scholar 

  • Foley SF, Yaxley GM, Rosenthal A, Buhre S, Kiseeva ES, Rapp RP, Jacob DE (2009) The composition of near-solidus melts of peridotite in the presence of CO2 and H2O between 40 and 60 kbar. Lithos 112:274–283. doi:10.1016/j.lithos.2009.03.020

    Article  Google Scholar 

  • Foley SF, Link K, Tiberindwa JV, Barifaijo E (2012) Patterns and origin of igneous activity around the Tanzanian craton. J Afr Earth Sci 62(1):1–18. doi:10.1016/j.jafrearsci.2011.10.001

    Article  Google Scholar 

  • Freestone IC, Hamilton DL (1980) The role of liquid immiscibility in the genesis of carbonatites: an experimental study. Contrib Mineral Petrol 73(2):105–117

    Article  Google Scholar 

  • Fujimaki H, Tatsumoto M, Aoki KI (1984) Partition coefficients of Hf, Zr, and REE between phenocrysts and groundmasses. J Geophys Res Solid Earth 89(Suppl):662–672

    Article  Google Scholar 

  • Furman T (2007) Geochemistry of East African Rift basalts: an overview. J Afr Earth Sci 48:147–160. doi:10.1016/j.jafrearsci.2006.06.009

    Article  Google Scholar 

  • Gibson SA, McMahon SC, Day JA, Dawson JB (2013) Highly refractory lithospheric mantle beneath the Tanzanian craton: evidence from Lashaine pre-metasomatic garnet-bearing peridotites. J Petrol 54(8):1503–1546. doi:10.1093/petrology/egt020

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15(2):103–190

    Article  Google Scholar 

  • Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Hålenius U (2013) Nomenclature of the garnet supergroup. Am Mineral 98(4):785–811. doi:10.2138/am.2013.4201

    Article  Google Scholar 

  • Griffin WL, Powell W, Pearson NJ, O’Reilly SY (2008) GLITTER: data reduction software for laser ablation ICP-MS. Laser ablation-ICP-MS in the earth sciences vol 40. Mineralogical Association of Canada Short Course Series, pp 204–207

  • Gudfinnsson GH, Presnall DC (2005) Continuous gradations among primary carbonatitic, kimberlitic, melilititic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3–8 GPa. J Pet 46(8):1645–1659. doi:10.1093/petrology/egi029

    Article  Google Scholar 

  • Guzmics T, Mitchell RH, Szabó C, Berkesi M, Milke R, Ratter K (2012) Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co–precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma. Contrib Mineral Petrol 164(1):101–122. doi:10.1007/s00410-012-0728-6

    Article  Google Scholar 

  • Guzmics T, Zajacz Z, Mitchell RH, Szabó C, Wälle M (2015) The role of liquid–liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions. Contrib Mineral Petrol 169(2):1–18. doi:10.1007/s00410-014-1093-4

    Article  Google Scholar 

  • Hamilton DL (1961) Nephelines as crystallization temperature indicators. J Geol 69(3):321–329

    Article  Google Scholar 

  • Hamilton DL, Bedson P, Esson J (1989) The behaviour of trace elements in the evolution of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 405–427

    Google Scholar 

  • Hammouda T, Keshav S (2015) Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem Geol 418:171–188. doi:10.1016/j.chemgeo.2015.05.018

    Article  Google Scholar 

  • Hansen SE, Nyblade AA, Benoit MH (2012) Mantle structure beneath Africa and Arabia from adaptively parameterized P-wave tomography: implications for the origin of Cenozoic Afro-Arabian tectonism. Earth Planet Sci Lett 319:23–34. doi:10.1016/j.epsl.2011.12.023

    Article  Google Scholar 

  • Harmer RE, Gittins J (1998) The case for primary, mantle-derived carbonatite magma. J Petrol 39(11–12):1895–1903

    Article  Google Scholar 

  • Hauri EH, Gaetani GA, Green TH (2006) Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions. Earth Planet Sci Lett 248(3):715–734. doi:10.1016/j.epsl.2006.06.014

    Article  Google Scholar 

  • Hirose K (1997) Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys Res Lett 24(22):2837–2840

    Article  Google Scholar 

  • Hui H, Peslier AH, Rudnick RL, Simonetti A, Neal CR (2015) Plume-cratonic lithosphere interaction recorded by water and other trace elements in peridotite xenoliths from the Labait volcano, Tanzania. Geochem Geophys Geosyst. doi:10.1002/2015GC005779

    Google Scholar 

  • Ivanikov VV, Rukhlov AS, Bell K (1998) Magmatic evolution of the melilitite–carbonatite–nephelinite dyke series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia). J Petrol 39(11–12):2043–2059

    Article  Google Scholar 

  • Johnson EA (2006) Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. Rev Mineral Geochem 62(1):117–154. doi:10.2138/rmg.2006.62.6

    Article  Google Scholar 

  • Jones AP, Smith JV, Dawson JB (1983) Glasses in mantle xenoliths from Olmani, Tanzania. J Geol 91(2):167–178

    Google Scholar 

  • Jugo PJ, Wilke M, Botcharnikov RE (2010) Sulfur K-edge XANES analysis of natural and synthetic basaltic glasses: implications for S speciation and S content as function of oxygen fugacity. Geochim Cosmochim Acta 74(20):5926–5938. doi:10.1016/j.gca.2010.07.022

    Article  Google Scholar 

  • Keir D, Bastow ID, Whaler KA, Daly E, Cornwell DG, Hautot S (2009) Lower crustal earthquakes near the Ethiopian rift induced by magmatic processes. Geochem Geophys Geosyst. doi:10.1029/2009GC002382

    Google Scholar 

  • Keller J, Zaitsev AN, Wiedenmann D (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos 91(1):150–172. doi:10.1016/j.lithos.2006.03.014

    Article  Google Scholar 

  • Keller J, Klaudius J, Kervyn M, Ernst GG, Mattsson HB (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania. Bull Volcanol 72(8):893–912. doi:10.1007/s00445-010-0371-x

    Article  Google Scholar 

  • Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J Petrol 39(11–12):2061–2075

    Article  Google Scholar 

  • Kjarsgaard B, Peterson T (1991) Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Miner Petrol 43(4):293–314

    Article  Google Scholar 

  • Klaudius J, Keller J (2006) Peralkaline silicate lavas at Oldoinyo Lengai, Tanzania. Lithos 91(1):173–190. doi:10.1016/j.lithos.2006.03.017

    Article  Google Scholar 

  • Koornneef JM, Davies GR, Döpp SP, Vukmanovic Z, Nikogosian IK, Mason PR (2009) Nature and timing of multiple metasomatic events in the sub-cratonic lithosphere beneath Labait, Tanzania. Lithos 112:896–912. doi:10.1016/j.lithos.2009.04.039

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on total alkali-silica diagram. J Petrol 27(3):745–750

    Article  Google Scholar 

  • Le Gall B, Nonnotte P, Rolet J, Benoit M, Guillou H, Mousseau-Nonnotte M, Albaric J, Deverchère J (2008) Rift propagation at craton margin: distribution of faulting and volcanism in the North Tanzanian Divergence (East Africa) during Neogene times. Tectonophysics 448(1):1–19. doi:10.1016/j.tecto.2007.11.005

    Article  Google Scholar 

  • Lee CT, Rudnick RL (1999) Compositionally stratified cratonic lithosphere: petrology and geochemistry of peridotite xenoliths from the Labait volcano, Tanzania. In: Proceedings of the VIIth international kimberlite conference, vol 1. pp 503–521

  • Lee WJ, Wyllie PJ (1997) Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions. Contrib Mineral Petrol 127(1–2):1–16

    Article  Google Scholar 

  • Lee WJ, Wyllie PJ (1998) Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. J Petrol 39(11–12):2005–2013

    Article  Google Scholar 

  • Lee CT, Rudnick RL, McDonough WF, Horn I (2000) Petrologic and geochemical investigation of carbonates in peridotite xenoliths from northeastern Tanzania. Contrib Mineral Petrol 139(4):470–484

    Article  Google Scholar 

  • Lee H, Muirhead JD, Fischer TP, Ebinger CJ, Kattenhorn SA, Sharp ZD, Kianji G (2016) Massive and prolonged deep carbon emissions associated with continental rifting. Nat Geosci 9:145–149. doi:10.1038/NGEO2622

    Article  Google Scholar 

  • Lindenfeld M, Rümpker G, Link K, Koehn D, Batte A (2012) Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift: evidence for rift initiation. Tectonophysics 566:95–104. doi:10.1016/j.tecto.2012.07.010

    Article  Google Scholar 

  • Mana S, Furman T, Carr MJ, Mollel GF, Mortlock RA, Feigenson MD, Turrin BD, Swisher CC (2012) Geochronology and geochemistry of the Essimingor volcano: melting of metasomatized lithospheric mantle beneath the North Tanzanian Divergence zone (East African Rift). Lithos 155:310–325. doi:10.1016/j.lithos.2012.09.009

    Article  Google Scholar 

  • Mana S, Furman T, Turrin BD, Feigenson MD, Swisher CC (2015) Magmatic activity across the East African North Tanzanian Divergence zone. J Geol Soc Lond. doi:10.1144/jgs2014-072

    Google Scholar 

  • Mariano AN, Roeder PL (1983) Kerimasi: a neglected carbonatite volcano. J Geol 91:449–455

    Article  Google Scholar 

  • Marks MA, Schilling J, Coulson IM, Wenzel T, Markl G (2008) The alkaline–peralkaline Tamazeght complex, High Atlas Mountains, Morocco: mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J Petrol 49(6):1097–1131. doi:10.1093/petrology/egn019

    Article  Google Scholar 

  • Martin LH, Schmidt MW, Mattsson HB, Guenther D (2013) Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1–3 GPa. J Petrol 54:2301–2338. doi:10.1093/petrology/egt048

    Article  Google Scholar 

  • Mathez EA, Webster JD (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69(5):1275–1286. doi:10.1016/j.gca.2004.08.035

    Article  Google Scholar 

  • Mattsson HB, Nandedkar RH, Ulmer P (2013) Petrogenesis of the melilititic and nephelinitic rock suites in the Lake Natron–Engaruka monogenetic volcanic field, northern Tanzania. Lithos 179:175–192. doi:10.1016/j.lithos.2013.07.012

    Article  Google Scholar 

  • Mitchell RH, Dawson JB (2012) Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent Eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152:40–46. doi:10.1016/j.lithos.2012.01.006

    Article  Google Scholar 

  • Moore G (2008) Interpreting H2O and CO2 contents in melt inclusions: constraints from solubility experiments and modeling. Rev Mineral Geochem 69(1):333–362. doi:10.2138/rmg.2008.69.9

    Article  Google Scholar 

  • Morimoto N (1988) Nomenclature of pyroxenes. Miner Petrol 39(1):55–76

    Article  Google Scholar 

  • Mulibo GD, Nyblade AA (2013) Mantle transition zone thinning beneath eastern Africa: evidence for a whole-mantle superplume structure. Geophys Res Lett 40(14):3562–3566. doi:10.1002/grl.50694

    Article  Google Scholar 

  • Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol 16(1):520–548

    Article  Google Scholar 

  • Nakagawa M, Wada K, Wood CP (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J Petrol 43(12):2279–2303

    Article  Google Scholar 

  • Nonnotte P (2007) Etude Volcano-tectonique de La Zone de Divergence Nord Tanzanienne (Terminaison Sud Du Rift Kenyan). Caractérisation Pétrologique et Géochimique Du Volcanisme Récent (8 Ma–Actuel) et Du Manteau Source. Contraintes de Mise En Place. Université de Bretagne Occidentale

  • Nyblade AA, Owens TJ, Gurrola H, Ritsema J, Langston CA (2000) Seismic evidence for a deep upper mantle thermal anomaly beneath east Africa. Geology 28(7):599–602

    Article  Google Scholar 

  • Oppenheimer C, Pyle DM, Barclay J (eds) (2003) Volcanic degassing. Geological Society of London 213

  • Papale P (1999) Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids. Am Mineral 84(4):477–492

    Article  Google Scholar 

  • Parat F, Holtz F (2005) Sulfur partition coefficient between apatite and rhyolite: the role of bulk S content. Contrib Mineral Petrol 150(6):643–651

    Article  Google Scholar 

  • Parat F, Holtz F, Klügel A (2011) S-rich apatite-hosted glass inclusions in xenoliths from La Palma: constraints on the volatile partitioning in evolved alkaline magmas. Contrib Mineral Petrol 162(3):463–478. doi:10.1007/s00410-011-0606-7

    Article  Google Scholar 

  • Paslick CR, Halliday AN, Lange RA, James D, Dawson JB (1996) Indirect crustal contamination: evidence from isotopic and chemical disequilibria in minerals from alkali basalts and nephelinites from northern Tanzania. Contrib Mineral Petrol 125(4):277–292

    Article  Google Scholar 

  • Paterson MS (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses, and similar materials. Bull Soc Fr Minéral Crist 105:20–29

    Google Scholar 

  • Peterson TD (1989) Peralkaline nephelinites. I. Comparative petrology of Shombole and Oldoinyo L’engai, East Africa. Contrib Mineral Petrol 101(4):458–478

    Article  Google Scholar 

  • Pik R, Marty B, Hilton DR (2006) How many mantle plumes in Africa? The geochemical point of view. Chem Geol 226(3):100–114. doi:10.1016/j.chemgeo.2005.09.016

    Article  Google Scholar 

  • Prowatke S, Klemme S (2005) Effect of melt composition on the partitioning of trace elements between titanite and silicate melt. Geochim Cosmochim Acta 69(3):695–709. doi:10.1016/j.gca.2004.06.037

    Article  Google Scholar 

  • Putirka K (1999) Clinopyroxene + liquid equilibria to 100 kbar and 2450 K. Contrib Mineral Petrol 135(2–3):151–163

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69(1):61–120. doi:10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Pyle DM, Dawson JB, Ivanovich M (1991) Short-lived decay series disequilibria in the natrocarbonatites lavas of Oldoinyo Lengai, Tanzania: constraints on the timing of magma genesis. Earth Planet Sci Lett 105:378–398

    Article  Google Scholar 

  • Rhodes JM, Dungan MA, Blanchard DP, Long PE (1979) Magma mixing at mid-ocean ridges: evidence from basalts drilled near 22 N on the Mid-Atlantic Ridge. Tectonophysics 55(1):35–61

    Article  Google Scholar 

  • Roeder PL, Emslie R (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29(4):275–289

    Article  Google Scholar 

  • Rubin AM, Pollard DD (1988) Dike-induced faulting in rift zones of Iceland and Afar. Geology 16(5):413–417

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114(4):463–475

    Article  Google Scholar 

  • Selby J, Thomas C (1966) Balangida Lelu, Quarter Degree Sheet 103. Tanzania Mineral Resources Division

  • Sharygin VV, Kamenetsky VS, Zaitsev AN, Kamenetsky MB (2012) Silicate–natrocarbonatite liquid immiscibility in 1917 eruption combeite–wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: melt inclusion study. Lithos 152:23–39. doi:10.1016/j.lithos.2012.01.021

    Article  Google Scholar 

  • Simonetti A, Shore M, Bell K (1996) Diopside phenocrysts from nephelinite lavas, Napak Volcano, eastern Uganda; evidence for magma mixing. Can Mineral 34(2):411–421

    Google Scholar 

  • Streck MJ, Dungan MA, Bussy F, Malavassi E (2005) Mineral inventory of continuously erupting basaltic andesites at Arenal volcano, Costa Rica: implications for interpreting monotonous, crystal-rich, mafic arc stratigraphies. J Volcanol Geotherm Res 140(1):133–155. doi:10.1016/j.jvolgeores.2004.07.018

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Thomas C (1966) Hanang, quarter degree sheet 84. 1:125000 Geol. Surv. Tanganyika, Tanzania Mineral Resources Division

  • Vauchez A, Dineur F, Rudnick R (2005) Microstructure, texture and seismic anisotropy of the lithospheric mantle above a mantle plume: insights from the Labait volcano xenoliths (Tanzania). Earth Planet Sci Lett 232(3):295–314. doi:10.1016/j.epsl.2005.01.024

    Article  Google Scholar 

  • Veksler IV, Nielsen TFD, Sokolov SV (1998) Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: implications for carbonatite genesis. J Petrol 39(11–12):2015–2031

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geochim Cosmochim Acta 79:20–40. doi:10.1016/j.gca.2011.11.035

    Article  Google Scholar 

  • Vernet M, Marin L, Boulmier S, Lhomme J, Demange JC (1987) Dosage du fluor et du chlore dans les matériaux géologiques y compris les échantillons hyperalumineux. Analusis 15(9):490–498

    Google Scholar 

  • Vetere F, Holtz F, Behrens H, Botcharnikov RE, Fanara S (2014) The effect of alkalis and polymerization on the solubility of H2O and CO2 in alkali–rich silicate melts. Contrib Mineral Petrol 167(5):1–17. doi:10.1007/s00410-014-1014-6

    Article  Google Scholar 

  • Wade JA, Plank T, Hauri EH, Kelley KA, Roggensack K, Zimmer M (2008) Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts. Geology 36(10):799–802. doi:10.1130/G24964A.1

    Article  Google Scholar 

  • Webster JD, Kinzler RJ, Mathez EA (1999) Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim Cosmochim Acta 63(5):729–738

    Article  Google Scholar 

  • White BS, Wyllie PJ (1992) Solidus reactions in synthetic lherzolite-H2O-CO2 from 20–30 kbar, with applications to melting and metasomatism. J Volcanol Geotherm Res 50(1):117–130

    Article  Google Scholar 

  • Wood CP (1968) A geochemical study of East African Alkaline Lavas and its Relevance to the Petrogenesis of Nephelinites. Ph.D. thesis, University of Leeds

  • Wood BJ, Trigila R (2001) Experimental determination of aluminous clinopyroxene–melt partition coefficients for potassic liquids, with application to the evolution of the Roman province potassic magmas. Chem Geol 172(3):213–223

    Article  Google Scholar 

  • Wright TJ, Ebinger C, Biggs J, Ayele A, Yirgu G, Keir D, Stork A (2006) Magma-maintained rift segmentation at continental rupture in the 2005 Afar dyking episode. Nature 442(7100):291–294. doi:10.1038/nature04978

    Article  Google Scholar 

  • Zaitsev AN, Marks MAW, Wenzel T, Spratt J, Sharygin VV, Strekopytov S, Markl G (2012) Mineralogy, geochemistry and petrology of the phonolitic to nephelinitic Sadiman volcano, Crater Highlands, Tanzania. Lithos 152:66–83. doi:10.1016/j.lithos.2012.03.001

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the ANR project CoLiBrEA CTN°LS 104568. We thank Tanzania COSTECH and the French Embassy for help for Research Permits, and University of Dar es Salaam and Nelson Mandela African Institute of Science and Technology in Arusha for their help during field sampling. We would like to thank C. Nevado, C. Garrido and Microsonde Sud for their valuable technical assistance, and S. Demouchy and J.M. Dautria for informative discussions. Constructive reviews by A. Zaitsev and an anonymous reviewer are gratefully acknowledged. We thank J. Hoefs for editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline Baudouin.

Additional information

Communicated by Jochen Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baudouin, C., Parat, F., Denis, C.M.M. et al. Nephelinite lavas at early stage of rift initiation (Hanang volcano, North Tanzanian Divergence). Contrib Mineral Petrol 171, 64 (2016). https://doi.org/10.1007/s00410-016-1273-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-016-1273-5

Keywords

Navigation