This work represents the first in situ, LA-ICP-MS study of the sulfide droplets in the Platinova Reef. It has revealed a number of important new geochemical characteristics of the sulfide mineralization to add to previous work and the recognition of extremely high precious metal tenors:
-
1.
The LA-determined Pd tenors of the sulfides are extremely high and are in the same range as those calculated from bulk rock (Holwell and Keays 2014) and 3D volume analysis (Godel et al. (2014), varying from 100 s of ppm to 10 s of %.
-
2.
The sulfides contain extremely high concentration of Se in solid solution in addition to the high precious metal tenors they are known to have. There is a significant peak in their Se contents at the base of the Cu zone, but above the main Au peak;
-
3.
The sulfides have the lowest S/Se ratios recorded in any known magmatic sulfide deposit;
-
4.
S/Se ratio does not differ systematically depending on textural context of the sulfide bleb.
-
5.
Tellurium is also highly enriched and is present both as a discrete PGM as well as in solid solution in the sulfides and also shows a peak at the base of the Cu zone, immediately above the Au peak.
-
6.
In detail, the peak metal offsets up through the reef are Pt+Pd>Au>Te>Se>Cu.
-
7.
There is a range of sulfide textures that appear to be the product of syn- and post-magmatic processes.
These points are discussed below in terms of the processes that may have operated to produce such features, with particular reference to our new Se and S/Se ratio data. In doing so, we are able to add to the current models for the genesis of the Platinova Reef and assess the implications for other similar Skaergaard-type deposits.
Size and timing of entrapment of sulfide microdroplets in the Platinova Reef
Textural observations of the petrography of samples from the Triple Group indicates that plagioclase occurs as lath-like plagioclase cumulus crystals (e.g., Godel et al. 2014) with clinopyroxene and Fe–Ti oxides making up the remainder of the rock. We concur with the conclusions of Godel et al. (2014) that sulfide droplets in the precious metal-enriched zones formed as cumulus phases and that they were then trapped more or less in situ as liquid droplets by crystallizing clinopyroxene and Fe–Ti oxides. The textures observed within this population of sulfide blebs (Fig. 2h, k) are interesting in that they show feathered boundaries focussed in a single direction that are not related to the encroachment of alteration silicates (c.f. Fig. 2f). We propose that the texture seen in Fig. 2k is the result of entrapment of a rounded sulfide droplet in clinopyroxene and that some of that sulfide liquid was squeezed along cleavage planes in the clinopyroxene which had crystallized at a temperature when the sulfide was still liquid.
Experimental work by Chung and Mungall (2009) showed that microdroplets of dense sulfide liquid have the ability to settle through very narrow pore channels, with the possibility of coalescing at ‘dead ends.’ There is no evidence of coalescence of droplets in the Platinova Reef, so if they did migrate through pore space, the speed of migration was equal to, or less than, the advancement of the crystallization front. As such, this puts a constraint on the settling velocity of the smallest droplets as being similar to or slower than the crystallization rate and we do not envisage that the tiny sulfide droplets below the Cu zone had the ability to significantly settle or migrate downwards before being trapped.
These interpretations have a single and extremely important implication. The sulfide microdroplets almost certainly did not have the ability to interact with a large amount of magma, which raises a problem in attempting to explain their extremely high metal contents which would normally require equilibration of the sulfides with a large volume of silicate magma (high R factor). However, the inference from the Cu/Pd data (Fig. 1e) is that the sulfides in the Cu zone formed from magma depleted of its PGE. Thus, there is an apparent paradox of sulfides that apparently did not interact with much magma, containing very high PGE tenors (below the Cu zone), but evidence of large-scale depletion of the magma above. Explanations for this will be covered below.
In the Cu zone, sulfide droplets are more abundant, larger and are found as inclusions in plagioclase as well as clinopyroxene and Fe–Ti oxides. We interpret this as evidence that these droplets separated from magma largely devoid of crystals and were able to settle downwards into the underlying crystal mush to a greater extent than those below. They were then trapped in all crystallizing phases as they approached the crystal–magma interface, as suggested by Holwell and Keays (2014). This population of sulfides arrived earlier at the margins of the bowl-shaped chamber floor than they did in its center; hence, the stratigraphic separation between the main Pd peak and the Cu zone is less at the margins of the intrusion than at its center.
Precious and semimetal characteristics of the sulfides
Despite the ‘nuggety’ occurrence of elements like the PGE, Au and Te that may be exacerbated by polishing, our approach of incorporating any PGM into the determination of bulk sulfide droplet compositions appears to be reliable if the mean values are considered. Mean Pd and Au tenors (Table 2) are of the same order of magnitude and thus consistent with that calculated by Holwell and Keays (2014) and Godel et al. (2014), despite a wide range (e.g., Fig. 4a). The determination of elements in solid solution, such as Se is, however, more precise (c.f. Fig. 4a, c).
Overall, the sulfides of the Platinova Reef are remarkable in several respects. They have the highest PGE tenors of any magmatic sulfides, with only the J-M Reef in Stillwater intrusion containing sulfides with PGE tenors of over 5000 ppm (Barnes and Naldrett 1985; Godel and Barnes 2008). Furthermore, they have the highest Se concentrations (400–1200 ppm) ever recorded in magmatic sulfide ores (c.f. Queffurus and Barnes 2015). For comparison, Se is generally present in sulfide minerals in the range of tens of ppm, up to around 250 ppm in some sulfide minerals (e.g., Dare et al. 2010; 2014; Piña et al. 2013, Prichard et al. 2013; Smith et al. 2014) and up to 455 ppm in sulfides of the Lac des Isles Complex (Djon and Barnes 2012). The S/Se ratios of the Platinova Reef (mostly 190–800) are lower than any other magmatic sulfide deposit currently recorded (see review by Queffurus and Barnes 2015; Fig. 7). The only other deposit with S/Se ratios as low the Platinova Reef is the Platreef (Fig. 7), where McDonald et al. (2012) show sulfide melt inclusions in chromite can have extremely high PGE tenors, and low S/Se ratios that they interpret to be a result of dissolution upgrading (c.f. Kerr and Leitch 2005).
The Te contents of magmatic sulfides are generally in the range of a few ppm (e.g., Dare et al. 2010; 2014; Djon and Barnes 2012; Piña et al. 2013, Prichard et al. 2013; Smith et al. 2014). Our data show that around the Au zone, Te concentrations are in the tens to a few hundred ppm (Table 2; Fig. 4e, j), and thus, the sulfides are anomalously enriched in Te as well as in Se, with the main Te peak located just above the main Au peak (Fig. 4e, j). The behavior of Te, Bi, As and Sb contrasts with that of Se which remains in solid solution in sulfide, by generally fractionating into immiscible telluride/bismuthide/arsenide and possibly antimonide melts on cooling and crystallization of a sulfide liquid (Helmy et al. 2010, 2013a, b; Holwell and McDonald 2010; Prichard et al. 2013). Furthermore, these melts sequester precious metals more effectively than sulfide melt (Helmy et al. 2010). Although this appears to include a significant amount of Te in solid solution in sulfide, the high concentrations of Te at the base of the Cu zone may also represent the presence of some immiscible telluride melts associated with the sulfides in this zone (e.g., Helmy et al. 2010, 2013a, b); though it is worth noting the dominant mineralogy of the PGE and Au remain as alloys.
While Te and Se are highly enriched, other semimetals are not. Bismuth is present in amounts similar to other magmatic sulfide deposits cited above and therefore is not anomalously enriched and does not show any relationship with Se (Fig. 5c), although it is present with Te in some bismuthotelluride minerals (Figs. 3c, j, 5d). There is almost no As and Sb in the Platinova Reef sulfides, which is likely to reflect parental magma composition (Table 2; Online Resource 1). These elements are often added to magmas by assimilation of crustal rocks (e.g., Hutchinson and Kinnaird 2005; Hutchinson and McDonald 2008) and the paucity of these elements in the Platinova Reef is consistent with the absence of crustal contamination in the Skaergaard magma (McBirney and Creaser 2003). Alternatively, or additionally, the lack of As may be due to it being fractionated with Pt further down the sequence, prior to the main mineralization event. Platinum–arsenides are known to precipitate directly from the magma (e.g., Coghill and Wilson 1993; Ohnenstetter et al. 1999), and this may provide a mechanism to remove both Pt and As during fractional crystallization in the Lower and Middle zones.
Silver is apparently present both in solid solution and as nuggets of Ag-bearing minerals, and so the large variation in Ag content (Fig. 4b) is, in part, due to the presence of Ag in both deportments (e.g., Fig. 3e). However, there is a significant dip in the Ag content of the sulfides in the Au zone (Fig. 5a), which is the opposite of the trend seen for Te and Se (Fig. 4). This is most likely due to the presence of significant amounts of Ag present as minerals in the Au zone that were polished away (e.g., electrum, Table 1). In one sample (+40.6 m; Table 2), the high Ag contents correlate with a high Au content of a Au–Ag–Pd phase. Nielsen et al. (2015) record native Ag, acanthite (Ag2S), Pd–Ag tellurides and Pd–Ag sulfides from the Au zone, though we cannot discount that Ag is actually relatively low in the sulfide assemblage in this zone.
Implications for models for the Platinova Reef
Figure 7 shows how the Platinova Reef sulfides compare to other magmatic sulfide deposits in terms of S/Se ratio and PGE tenor. Interestingly, the sulfides of the Platinova Reef plot along the same general trend of increasing PGE tenor with decreasing S/Se ratio that Queffurus and Barnes (2015) show for all other magmatic sulfide deposits (Fig. 7). Thus, the Platinova Reef sulfides may be considered to be an extreme end member for high tenor sulfides, and the process that enriched them in PGE may also be responsible for the low S/Se ratios, by way of also enriching them in Se.
The very clear relationship between the Cu/Pd ratios and Pd contents of the rocks in the Cu zone indicate formation of sulfides from magma that was PGE depleted (Fig. 1e). In complete contrast, the sulfides below the Cu zone are extremely high tenor and contain much of the bulk of the Skaergaard precious metal budget. Therefore, the process(es) responsible for the formation of the Platinova Reef stripped much of the Au and PGE out of the magma column lying above the Reef (Holwell and Keays 2014; Nielsen et al. 2015; Keays and Tegner 2015). Thus, there needs to be a mechanism by which the majority of the PGE within the Skaergaard magma can be concentrated into a zone of up to a few tens of meters, containing very tiny sulfides that most likely formed in situ, but also one that can account for Se and Te enrichment in the lower portions of the more sulfide-rich Cu zone as well.
Here we focus on our new and very well-constrained Se and S/Se data to assess the processes responsible for the development of the Platinova Reef. In particular, we look at the magnitude of enrichment in the sulfides, and the reasons for the extremely low S/Se ratios. Firstly, it is important to know whether the observed Se concentrations and S/Se ratios are simply inherited from the bulk Skaergaard magma composition. Keays and Tegner (2015) record an initial Se value for the Skaergaard magma of 85 ppb, from a sample of the intrusion’s chilled margin; they obtained an initial value of 95 ppb Se from modeling the distribution of Se throughout the entire Skaergaard stratigraphy. This is not anomalously high for basaltic rocks; by comparison, MORB glasses contain around 150–300 ppb Se (Peach et al. 1990; Jenner et al. 2010), and thus, we do not consider the Skaergaard magma to be particularly Se enriched to begin with. Therefore, the reason for the extreme enrichment of Se (and other elements) in sulfides must lie in the effectiveness of element enrichment in the processes responsible for, or prior to, sulfide formation.
Similarly, the low S/Se ratios may have been a result of an initially low S/Se ratio in the Skaergaard magma. Keays and Tegner (2015) report a S/Se ratio of the parental Skaergaard magma of 1180, which is well below the chondritic range of 2560 ± 150 (Dreibus et al. 1995) and the mantle range of 2850–4350 (Eckstrand and Hulbert 1987). Although the low S/Se ratio of the initial magma may have been one factor, some other process or processes must have been responsible for the low S/Se contents of the sulfides in the Platinova Reef and especially those at the base of the Cu zone. So, although the Skaergaard magma was not enriched in Se, it does appear that it was depleted in S, by around an order of magnitude to that expected of FeO-rich magma, prior to emplacement, or during crystallization. The reasons for this are not clear at present and are beyond the scope of this paper.
Evidence for enrichment of a boundary layer
In many magmatic sulfide systems, it is possible to model the enrichment of chalcophile elements such as Se into a magmatic sulfide that interacts using the simple R factor equation from Campbell and Naldrett (1979):
$$Y_{i} = [D_{i} *Y_{oi} *(R + 1)]/(R + D_{i} )$$
(1)
where Y
i
is the concentration of metal in the sulfide, D
i
is the distribution coefficient between sulfide liquid and silicate magma of the metal, Y
oi
is the original concentration of the metal in the magma, and R is the ratio of the volume of silicate melt to that of the sulfide liquid. However, this requires equilibration of the sulfides with large amounts of silicate liquid, which is seemingly untenable for the Platinova Reef, where tiny sulfides have formed and been trapped in situ.
To illustrate this, if one takes an initial Se content in the Skaergaard magma of 85 ppb and allow for Rayleigh fractionation, the Se in the residual magma at the time of Triple Group formation would be around 341 ppb (Keays and Tegner 2015). Using a D
sul/sil value of 1388 for Se (Brenan 2015), it is not possible to produce a sulfide with anything more than 473 ppm Se from an initial magma composition of 341 ppb (using R factors in the millions); therefore, the observed concentrations cannot have been attained by the simple relationship given in Eq. (1). In other words, simple R factor models do not work for Skaergaard. Nevertheless, the PGE, Au and Se tenors of the sulfides are extremely high, and thus, the major mechanism of precious (and semi) metal enrichment must be different to that proposed for more conventional Ni–Cu–PGE sulfide deposits as per Campbell and Naldrett (1979); a view also held by Nielsen et al. (2015).
Given that the sulfides in the Subzone, Pd zone and Intermediate zone formed more or less in situ, the very high metal tenors indicate an apparent mass balance problem. If we take the Pd grade for the Subzone to be 0.47 ppm over 8 m, 1.7 ppm over 4 m in the Pd zone and 0.54 ppm over 36 m in the Intermediate zone (data from drill hole PRL10-47; Holwell and Keays 2014), this gives an average bulk grade over this 48-m section of 0.5 ppm Pd (equivalent to ~1000 m of stratigraphy at 10 ppb Pd). In order to produce sulfides that form in situ that contain these grades, the magma from which the Platinova Reef sulfides segregated must have had anomalously high chalcophile elements contents. As such, the presence of an enriched boundary layer at the base of the chamber is an attractive explanation, though the generation of this may have occurred in a number of ways.
Continued crystallization of the magma chamber could potentially enrich a boundary layer in incompatible elements (such as PGE, Au, Se and Te) at the crystal–magma interface in the interstitial melt, and as adcumulates are formed, this will migrate upwards to the top of the crystal pile (e.g., Morse 1986). If it stayed there, it could form an enriched layer at the bottom of the chamber. In such a case, the first sulfides to form would have the ability to become highly enriched due them separating into a super-concentrated layer, though may become trapped by the crystal mush forming around them. The upward metal variations would then be produced by relative D
sul/sil values. In the rest of the chamber, sulfides would have the chance to grow, but would be of lower tenors, and start to settle. When these sulfides arrived at the floor, it would produce a transition from tiny, high tenor sulfides to larger, low tenor sulfides. Enrichment of a boundary layer in this manner may well be the major mechanism responsible for the mineralization styles seen at Rincon del Tigre or Stella, with the formation of massive magnetite layers. However, Morse (1986) points out that in the case of mafic magmas, the residual melt will be less dense than the magma and hence will not form a boundary layer that is enriched in the incompatibles (e.g., Pd). This is especially so in the case of the Skaergaard magma, and so we suggest an alternative explanation for the extreme enrichment.
However, for the ultra-high tenors at Skaergaard such a process may still not be enough and Keays and Tenger (2015) show that PGE-rich cumulus sulfides started to form in this boundary layer in response to magnetite fractionation some 300 m below the Platinova Reef, but not in significant amounts. Both Holwell and Keays (2014) and Nielsen et al. (2015) invoke later ‘downer’ mechanisms that concentrate the bulk of the precious metals into an enriched layer at the base of the chamber at the time of the Triple Group formation to explain the extreme enrichment. Both models involve the well-documented presence of immiscible Fe-rich silicate melts that were present during the formation of the Triple Group formation (Jakobsen et al. 2005; Veksler 2009; Jakobsen et al. 2011; Holness et al. 2011). As the Platinova Reef sulfides formed in this zone, they will have been subject to interaction with such liquids, and it is likely they played some role in the development of the characteristics of the Platinova Reef. Holwell and Keays (2014) suggest that sulfides formed along the roof and margin sequestered the precious metals and that these sulfides totally dissolved in the immiscible Fe-rich melts present at the floor to produce an enriched basal layer. In the model of Nielsen et al. (2015), it is the Fe-rich silicate melts that dissolve and transport the precious metals to the floor. In either case, the extreme tenors and the high apparent R factors at Skaergaard are fundamentally linked to a boundary layer that had anomalously high chalcophile metal contents that were much higher than those calculated by Rayleigh fractionation alone.
Our new data imply that if this was the case, the sulfides that formed the base of the Cu zone interacted with a significantly Se-enriched magma; however, this zone was not particularly enriched in PGE, thus possibly indicating some variable stratification of PGE-, Se- and Te-enriched zones in any boundary layer, or at least a thicker zone of Se enrichment than PGE enrichment. In the model of Holwell and Keays (2014), sulfides sequestered the majority of the precious metals and dissolved as they approached the floor. The first elements to be resorbed by the magma would be Fe and S, which have low partition coefficients. These would be followed by Se which would start to dissolve back into the magma earlier than the PGE due to its lower D
sul/sil value (1388 for Se; Brenan 2015; compared with >536,000 for Pd; Mungall and Brenan 2014), and thus, the zone of enrichment in Se would be greater than that proposed for the PGE enrichment. Therefore, the highest Se enrichment at the base of the Cu zone could be explained by these sulfides being the earliest droplets of subsequent sulfide that settled through and encountered a Se-enriched zone and were therefore able to become extremely enriched in Se as they sank (thus attaining a higher R factor than the sulfides below that formed in situ as discussed above). The subsequent decrease in Se values with height up through the Cu zone is a function of Se being depleted in the magma by being taken up by the settling sulfides, such that with height, there was less Se in the magma for the sulfides to collect. The same is likely to be the case for Te, which shows a similar peak at the base of the Cu zone.
The exceedingly low S/Se ratios in the Cu zone, and especially their upward increase (Fig. 4c), provide further insight. Queffurus and Barnes (2015) show that there are number of syn- and post-magmatic processes that can affect S/Se ratios, many of which will cause a decrease in S/Se, and as such, S/Se ratios can be used to trace a number of ore-forming and modifying processes. Of those which can cause a lowering of the initial S/Se ratios include: increases in R factor (or an analogous process such as sulfide dissolution), metamorphism, hydrothermal alteration and serpentinization. For the Platinova Reef, we can discount metamorphism and serpentinization (which are absent at Skaergaard); however, hydrothermal activity may be a possibility, with S removed by migrating fluids. However, as shown in Fig. 2, many of our analyses are of sulfides that have little to no evidence of alteration, and the S/Se ratios remain consistently low throughout the dataset, irrespective of the degree of alteration. Therefore, we interpret the ratios result from magmatic processes.
Due to the higher D
sul/sil value of Se compared to S, variations in R factor should effectively control the S/Se ratio in sulfides in the same way it controls PGE tenor (Queffurus and Barnes 2015). In other words, as R factor increases, the PGE and Se become enriched in the sulfide liquid due to their high D
sul/sil values. Thus, in very high R factor systems, PGE and Se tenors will be high, and consequently, S/Se ratios will be low. Although we have argued that R factors may have been very low below the Cu zone, there is likely to be an increase in R factor above the Au zone as the larger sulfides in the Cu zone had the ability to grow and interact with a greater volume of magma, as discussed above. Thus, the increase in Se (and decrease in S/Se) at the base of the Cu zone could reflect an increase in the R factor. However, if this is the case, this process operated for Se in the Cu zone, but not the precious metals. This may indicate the presence of a much thicker zone of Se enrichment in the boundary/basal layer of magma compared with the PGE.
Magmatic processes responsible for producing very high tenors
Even with the presence of an enriched boundary layer, the tenors of the Platinova Reef sulfides are so high, a number of other mechanism are likely to be responsible for the both the ultra-high tenors and the metal offsets. Sulfide dissolution (Kerr and Leitch 2005) produces the same effect, with high D
sul/sil elements such as Se and PGE retained preferentially in a dissolving sulfide. Therefore, sulfide dissolution (as suggested by Godel et al. 2014) could reduce the S/Se ratio along with increasing the PGE tenor of a sulfide droplet. This mechanism alone cannot be the cause of the exceedingly low S/Se ratios at the base of the Cu zone as they have relatively low PGE tenors. However, Godel et al. (2014) demonstrate that Pd tenors in the Pd zone appear to be lower in sulfide blebs included within oxide and interpret that the sulfides present in oxides were protected from dissolution, while those outside partially dissolved. Our data show no systematic variation in S/Se ratio with textural association (Fig. 6), and therefore, the S/Se data do not support preferential dissolution of sulfides outside of oxides. If so, one would expect the oxide-hosted sulfides to have the highest S/Se ratios, whereas in fact, they have relatively low S/Se ratios in some cases. We do not dispute the observations of Godel et al. (2014) and therefore suggest there may be an alternative explanation for the disparity between apparent Pd tenors and S/Se ratios on a bleb-by-bleb scale. This would require a slightly different concentration mechanism for the PGE than for Se.
One possibility would be whether the Pd-rich phases nucleated separately in the magma as PGM phases (e.g., the ‘clusters’ model of Tredoux et al. 1995; and subsequent work by Ballhaus and Sylvester 2000; Helmy et al. 2013a, b). If sulfide liquid droplets nucleated on such phases, then on the individual bleb scale, the droplets may have been able to grow to different sizes. This would produce sulfide–PGM aggregates of different Pd tenors, but the S/Se ratio of the sulfide should be broadly similar, irrespective of the size. Karup-Møller et al. (2008) show experimentally that PdCu can form from a Pd-rich Cu sulfide liquid, though this does not necessarily mean that the Pd was not collected by the sulfide as a preformed phase. Alternatively, mechanical splitting of the sulfide–PGM droplets during crystallization of the surrounding minerals may have necked some sulfide liquid and produced more than one microdroplet from a single parent droplet. In this case, the PGM may be preferentially retained by one of the new droplets, resulting in variable Pd tenors, but keeping the S/Se ratio the same.
Mungall (2002) demonstrated that small sulfide droplets formed from sulfide saturated silicate melts that do not coalesce will preserve metal compositions controlled by kinetic effects; this situation is directly applicable to the Platinova Reef. The concentration of any element in the sulfide is a function not only of how chalcophile that element is (the equilibrium metal partitioning: D
sul/sil) but also the diffusivities of the most chalcophile elements. Metals that diffuse into the droplet faster than Fe2+ and S2− cause the concentrations of those metals to rise faster than they can be diluted by the growing droplet, thus producing a high apparent R factor in the earliest microdroplets. As such, sulfides that demonstrate high apparent R factors can result from the removal of small amounts of sulfide at small degrees of sulfide saturation. Modeling of this effect by Mungall (2002) showed that the offset metal profiles in the Munni Munni Intrusion, Australia, could be accounted for by fractional segregation of kinetically fractionated sulfide droplets. Therefore, this mechanism could explain both the offset nature of the metal profiles and the very high apparent R factor of the PGE-enriched sulfides in deposits such as the Platinova Reef. While this apparently explains several of the generic features well, in bulk terms, the in situ crystallization of sulfides would still need a starting magma composition in the region of 0.25–0.5 ppm Pd, as discussed above. As such, even if the kinetic diffusion model is partly responsible for the metal offsets and concentration, there appears to be a requirement for further enrichment by at least one other process.
The role of syn- or post-magmatic fluids
Our observations of the textures of the sulfide droplets are generally in agreement with textures reported in previous mineralogical studies (e.g., Bird et al. 1991; Andersen et al. 1998; Cabri et al. 2005; Nielsen et al. 2005; Godel et al. 2014). Sulfides trapped within oxides and pyroxenes have rounded droplet morphologies or negative crystal shapes consistent with trapping of very small droplets of sulfide liquid (Ohnenstetter et al. 1999). Alteration of the sulfides by secondary, hydrous silicates such as actinolite–tremolite–talc, as is common in many PGE sulfide deposits (e.g., Li et al. 2004; Hutchinson and Kinnaird 2005; Holwell et al. 2006), is variable in the Platinova Reef (e.g., Fig. 2d, f) and therefore alteration must have caused some S loss. There is very little evidence of any post-entrapment alteration and S loss in many of our samples, which display consistent S/Se ratios (Fig. 4d). Thus, the Se contents and S/Se ratios are most likely to reflect primary magmatic processes, rather than post-magmatic hydrothermal ones.
Nielsen et al. (2015) and Rudashevsky et al. (2014) invoke late-stage mobilization of Au by a volatile-bearing residual of the Fe-rich melt to explain the concentration of Au in the Au zone; with late deposition of Au on grain boundaries in a two-stage paragenesis. Following the ‘downer’ mechanism whereby enrichment of the boundary layer takes place, Nielsen et al. (2015) suggest ‘upper’ redistribution of Au, Te and other elements in a late-stage volatile phase forced up by compaction, following their dissolution from molten sulfide droplets. Dissolution and transport of such elements is a possibility and would explain the association of Au with other volatile phases. However, dissolution of molten sulfide should enrich the melt in S over Se (due to their respective D
sul/sil values) and produce a melt with a high S/Se ratio that may also be enriched in Au. In such a model, this relatively Se-poor but Au (and Te)-rich melt would be distributed and deposited at the Au zone. However, our data show that the Au and Cu zone actually preserves the highest Se contents (and thus lowest S/Se ratios). Therefore, we favor a model that involves a combination of magmatic processes, with the respective metal peak offsets being determined in order of D values.
Peak metal offsets and relative D values
One of the main characteristics of Skaergaard-like deposits is the presence of offsets in PGE, Au and Cu peaks. Our work has now added Te and Se to that, such that the Platinova Reef displays distinct offset peaks in first Pt + Pd, then Au, closely followed by Te, and then Se, then Cu. While there is generally some uncertainty of the precise partition coefficients of these metals into sulfide (Mungall and Brenan 2014), and some variability determined by such factors as FeO content in the magma (e.g., Brenan 2015), the generally accepted values are entirely consistent with the observed sequence in the Platinova Reef. The D
sul/sil for Pd and Pt are ~500,000 and 300,000, respectively (Mungall and Brenan 2014). The D
sul/sil for Au is lower and may be as high as 18,600 (Peach et al. 1990), though Brenan and Mungall report values up to 11,200. Brenan (2015) report D
sul/sil values for Te in the range 1005–10,000 and Se 200–1920, but note that Te is always more compatible than Se under any given conditions. As such, the sequence of metal offsets is entirely consistent with magmatic partitioning into sulfide.
Implications for the formation of the Skaergaard-like deposits
It is clear that the formation of stratiform Cu sulfide dominant PGE reef in the upper parts of layered intrusions is potentially the product of a number of concurrent high-temperature, largely orthomagmatic processes, but that differ from conventional R factor models. However, the comparable characteristics of many of these deposits imply that some of these processes are likely to be ‘essential’ and common to all intrusions, with the differences in the detailed geochemistry and mineralogy being related to other ‘non-essential’ processes, applicable to some. We can summarize that the following processes explain a number of the key features of these deposits:
Essential processes are as follows:
-
1.
Late-stage sulfide saturation: position of the reef in the upper parts of the intrusion, Cu-rich, Ni-poor nature of the sulfides;
-
2.
An enriched boundary layer, possibly formed by dissolution of sulfides and/or the migration of metal-rich Fe-rich melts: ability for metal enrichment despite low R factors;
-
3.
Magnetite crystallization: trigger for sulfide saturation (though this can be gradual, as at Skaergaard);
-
4.
Kinetic fractionation: enrichment of the first, tiny sulfides in precious metals and the metal offsets; and
-
5.
Differences in Dsul/sil values: metal offsets.
Non-essential processes but advantageous are as follows:
-
6.
Change in R factor: increase in sulfide volume with concurrent Se and Te peak and reduction in S/Se ratios;
-
7.
Partial dissolution of sulfide: increased metal tenors, reduction in S/Se;
-
8.
Total dissolution of sulfide: pre-enrichment of a magma package for sulfides to separate into and gain extremely high tenors and extremely low S/Se ratios, the Se peak at the base of the Cu zone;
-
9.
Presence of immiscible Fe-rich silicate melts: allows for dissolution of sulfide in a closed-system magma chamber; and
-
10.
Hydrothermal alteration: S loss, reduction in S/Se ratios and increased metal tenor, possible redistribution of metals.
Figure 8 shows a generalized model for the process of extreme enrichment of PGE and semimetals in a closed-system magma chamber based on a combination of the processes and models developed for the Skaergaard Intrusion, but which also may be applicable to varying degrees for other intrusions. Initial sulfide saturation is triggered by prolonged fractional crystallization and compounded by magnetite crystallization. In the case of the Platinova Reef, the dissolution of a conventionally metal-enriched sulfide liquid by interaction with immiscible Fe-rich silicate melts formed a small, enriched package of silicate magma (Fig. 8a) which became primed for a subsequent interaction with sulfide liquid during a second stage of sulfide saturation. First-stage dissolution is seen as ‘essential’ for the Platinova Reef in order to generate the extreme metal enrichment as discussed above, though may not be necessary in other cases. Microdroplets of sulfide (from either an initial or secondary stage of sulfide saturation) can become highly enriched in chalcophile element through kinetic effects as suggested by Mungall (2002) as well as conventional metal partitioning (Fig. 8b). Thus, the size of the sulfide droplets in such a situation needs only to be small, without the necessity to grow, coalesce and settle through a magma column, and may be trapped in situ as tiny, metal-rich sulfides. As such, the nature of such deposits is unusual in that they may have extremely low volumes of sulfides which host the PGE and thus be extremely difficult to identify in the field. The onset of major sulfide saturation and the formation of larger droplets of sulfides provide a critical transition from high tenor sulfides trapped in situ to larger, lower tenor sulfides that may have settled (Fig. 8c). This marks a change to higher R factors, but actually lower PGE tenors. The transition is marked by an immediate peak in Au and very closely followed by Te and then by a peak Se, such that the metal offsets through the reef profile mirror the effects of chemical and kinetic partitioning Pt+Pd>Au>Te>Se>Cu (Fig. 8d). Late- or post-magmatic S loss may then upgrade the metal tenors further, but we advocate that the metal offsets and enrichments can be explained entirely by magmatic processes and do not require any fluid mobilization of metals.
In more general terms, because the proposed evolution of the mineralization involves more than one sulfide regime (and associated R factor), the geochemical signatures present in the rocks are a function of more than one process. Therefore, some features may be amplified or even eradicated from that expected from a single-stage process of sulfide liquid enrichment and settling. In particular, the paucity of S in these deposits and low S/Se ratios are a result of primary magmatic processes that are analogous to an increase in apparent R factor. Furthermore, low S contents do not necessarily require post-magmatic hydrothermal S loss, but can be the product of a number of concurrent high-temperature processes as discussed by Keays and Tegner (2015).
This study illustrates that magmatic sulfides are able to acquire extremely high metal and semimetal tenors and exceedingly low S/Se ratios in situ without the need to necessarily interact with a large volume of magma, through a number of mechanisms. However, in order to obtain the extreme enrichment of metals and semimetals as is the case of the Platinova Reef, we suggest that pre-enrichment of a basal layer of magma was probably required, in addition to a combination of other processes. As such, while ‘Skaergaard-type’ deposits have a number of common characteristics, Skaergaard itself may simply be unique (Figs. 7, 8).