Skip to main content

Advertisement

Log in

Discussion on “Coesite-bearing eclogite breccia: implication for coseismic ultrahigh-pressure metamorphism and the rate of the process” by Yang et al. (Contrib. Mineral. Petrol., 2014a, 167: 1013)

  • Discussion
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Recently, Yang et al. (Contrib Mineral Petrol 167:1013, 2014a) proposed that “cataclasites,” “breccias” and “pseudotachylytes” of eclogites at Yangkou in the Chinese Sulu UHP metamorphic belt are formed by “a compression stress wave of earthquake.” They suggested that the intergranular coesite resulted from a rapid cooling from about 700 °C to below 375–400 °C and a “sudden pressure release of seismic wave” from 3.3 to 1.2 GPa in some hours. However, the earthquake-induced UHP metamorphism under fluid-deficient conditions, proposed by these authors, remains inconclusive and inconsistent with the available data from the UHP metamorphic belt. The coesite inclusions within garnet, zircon and omphacite, and intergranular coesite grains between these minerals can be preserved by the presence of the pressure vessel effect, the lack of fluid infiltration, and the presence of a low-temperature and nonhydrostatic deformation environment during rapid exhumation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Austrheim H, Boundy TM (1994) Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science 265:82–83

    Article  Google Scholar 

  • Brace WF, Kohlstedt DL (1980) Limits on lithospheric stress imposed by laboratory experiments. J Geophys Res 85:6248–6252

    Article  Google Scholar 

  • Brace WF, Ernst WG, Kallberg RW (1970) An experimental study of tectonic overpressure in Franciscan rocks. Geol Soc Am Bull 81:1325–1338

    Article  Google Scholar 

  • Burov E, Jolivet L, Le Pourhiet L, Poliakov A (2001) A thermomechanical model of exhumation of high pressure (HP) and ultrahigh pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics 342:113–136

    Article  Google Scholar 

  • Chopin C (2003) Ultrahigh-pressure metamorphism: tracing continental crust into the mantle. Earth Planet Sci Lett 212:1–14

    Article  Google Scholar 

  • Clark MK, Royden LH (2000) Topographic ooze: building the eastern margin of Tibet by lower crustal flow. Geology 28:703–706

    Article  Google Scholar 

  • Collettini C, Niemeijer A, Viti C, Marone C (2009) Fault zone fabric and fault weakness. Nature 462:907–911

    Article  Google Scholar 

  • Di Toro G, Hirose T, Nielsen S, Pennacchioni G, Shimamoto T (2006) Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311:647–649

    Article  Google Scholar 

  • Gillet P, Ingrin J, Chopin C (1984) Coesite in subducted continental crust: P-T history deduced from an elastic model. Earth Planet Sci Lett 70:426–436

    Article  Google Scholar 

  • Green HW (2005) Psychology of a changing paradigm: 40+ years of high-pressure metamorphism. Int Geol Rev 47:439–456

    Article  Google Scholar 

  • Hemingway BS, Bohlen SR, Hankins WB, Westrum EF Jr, Kuskov OL (1998) Heat capacity and thermodynamic properties for coesite and jadeite, re-examination of the quartz-coesite equilibrium boundary. Am Miner 83:409–418

    Google Scholar 

  • Hirth G, Tullis J (1992) Dislocation creep regimes in quartz aggregates. J Struct Geol 14:145–159

    Article  Google Scholar 

  • Ji SC, Wang Q (2010) Interfacial friction-induced pressure and implications for the formation and preservation of intergranular coesite in metamorphic rocks. J Struct Geol 33:107–113

    Article  Google Scholar 

  • Ji SC, Xia B (2002) Rheology of polyphase earth materials. Polytechnic International Press, Montreal, Canada, p 259

  • Ji SC, Li A, Wang Q, Long C, Wang H, Marcotte D, Salisbury M (2013) Seismic velocities, anisotropy and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones. J Geophys Res 118:1015–1037

    Article  Google Scholar 

  • Kanamori H (1994) Mechanics of earthquakes. Ann Rev Earth Planet Sci 22:207–237

    Article  Google Scholar 

  • Kohlstedt DL, Evans B, Mackwell SJ (1995) Strength of the lithosphere: constraints imposed by laboratory experiments. J Geophys Res 100:17587–17602

    Article  Google Scholar 

  • Lachenbruch AH, Sass JH (1992) Heat flow from Cajon Pass, fault strength, and tectonic implications. J Geophs Res 97:4995–5015

    Article  Google Scholar 

  • Li ZH, Gerya TV, Burg JP (2010) Influence of tectonic overpressure on P-T paths of HP-UHP rocks in continental collision zones: thermomechanical modeling. J Metamorph Geol 28:227–247

    Article  Google Scholar 

  • Liou JG, Zhang RY (1996) Occurrence of intragranular coesite in ultrahigh-P rocks from the Sulu region, eastern China: implications for lack of fluid during exhumation. Am Miner 81:1217–1221

    Google Scholar 

  • Liou JG, Zhang RY, Ernst WG, Rumble D, Maruyama S (1998) High-pressure minerals from deeply subducted metamorphic rocks. In: Hemley RJ (ed) Ultrahigh-pressure mineralogy: physics and chemistry of the earth’s deep interior. Mineralogical Society of America, Washington, pp 33–96

    Google Scholar 

  • Mancktelow NS (2008) Tectonic pressure: theoretical concepts and modeled examples. Lithos 103:149–177

    Article  Google Scholar 

  • Melosh HJ (1996) Dynamical weakening of faults by acoustic fluidization. Nature 279:601–606

    Article  Google Scholar 

  • Moore DE, Lockner DA (2013) Chemical controls on fault behavior: weakening of serpentinite sheared against quartz-bearing rocks and its significance for fault creep in the San Andreas system. J Geophys Res 118:2558–2570

    Article  Google Scholar 

  • Moore DE, Lockner DA, Ma S, Summers R, Byerlee JD (1997) Strengths of serpentinite gouges at elevated temperatures. J Geophys Res 102:14787–14801

    Article  Google Scholar 

  • Mosenfelder JL, Bohlen SR (1997) Kinetics of the coesite to quartz transformation. Earth Planet Sci Lett 153:133–147

    Article  Google Scholar 

  • Mosenfelder JL, Schertl HR, Smyth JR, Liou JG (2005) Factors in the preservation of coesite: the importance of fluid infiltration. Am Miner 90:779–789

    Article  Google Scholar 

  • Noda H, Dunham EM, Rice JR (2009) Earthquake ruptures with thermal weakening and the operation of major faults at low overall stress levels. J Geophys Res 114:B07302

    Google Scholar 

  • Parkinson CD, Katayama I (1999) Present-day ultrahigh-pressure conditions of coesite inclusions in zircon and garnet: evidence from laser Raman microspectroscopy. Geology 27:979–982

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, New York 366

    Google Scholar 

  • Paterson MS, Wong TF (2005) Experimental rock deformation—the brittle field. Springer, New York 347

    Google Scholar 

  • Perrillat JP, Daniel I, Lardeaux JM, Cardon H (2003) Kinetics of the coesite-quartz transition: application to the exhumation of ultrahigh-pressure rocks. J Petrol 44:773–788

    Article  Google Scholar 

  • Petrini K, Podladchikov Y (2000) Lithospheric pressure-depth relationship in compressive regions of thickened crust. J Metamorph Geol 18:67–77

    Article  Google Scholar 

  • Powell R, Holland TJB (2008) On thermobarometry. J Metamorph Geol 26:155–179

    Article  Google Scholar 

  • Renner J, Stockhert B, Zerbian A, Roller K, Rummel F (2001) An experimental study into the rheology of synthetic polycrystalline coesite aggregates. J Geophys Res 106:19411–19429

    Article  Google Scholar 

  • Royden LH, Burchfiel BC, King RW, Wang E, Chen Z, Shen F, Liu Y (1997) Surface deformation and lower crustal flow in eastern Tibet. Science 276:788–790

    Article  Google Scholar 

  • Rutland RWR (1965) Tectonic overpressures. In: Pitcher WS, Flinn GW (eds) Controls of metamorphism. Oliver & Boyd, Edinburgh, pp 119–139

    Google Scholar 

  • Schmid SM, Paterson MS, Boland JN (1980) High temperature flow and dynamic recrystallization in Carrara marble. Tectonophysics 65:245–280

    Article  Google Scholar 

  • Scholz CH (2002) The mechanics of earthquakes and faulting. 2nd edn, Cambridge University Press, Cambridge pp 1-508

  • Sibson RH, Robert F, Poulsen KH (1988) High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 16:551–555

    Article  Google Scholar 

  • Sleep NH, Blanpied ML (1992) Creep, compaction and the weak rheology of major faults. Nature 359:687–692

    Article  Google Scholar 

  • Spray JG (1992) A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204:205–221

    Article  Google Scholar 

  • Twiss RJ, Moores EM (1992) Structural geology. Freeman, New York 532

    Google Scholar 

  • van der Molen I, van Roermund HLM (1986) The pressure path of solid inclusions in minerals: the retention of coesite inclusions during uplift. Lithos 19:317–324

    Article  Google Scholar 

  • Wain AL, Waters DJ, Austrheim H (2001) Metastability of granulites and processes of eclogitization in the UHP region of western Norway. J Metamorph Geol 19:609–625

    Article  Google Scholar 

  • Walker AN, Rutter EH, Brodie KH (1990) Experimental study of grain-size sensitive flow of synthetic, hot-pressed calcite rocks. In: Knipe RJ, Agar SM (eds) Deformation mechanisms, rheology and tectonics. Geological Society, UK, pp 259–284

    Google Scholar 

  • Wallis SR, Ishiwatari A, Hirajima T, Ye K, Guo J, Nakamura D, Kato T, Zhai M, Enami M, Cong B, Banno S (1997) Occurrence and field relationships of ultrahigh-pressure metagranitoid and coesite eclogite in the Su-Lu terrane, eastern China. J Geol Soc 154:45–54

    Article  Google Scholar 

  • Wibberley CAJ, Shimamoto T (2005) Earthquake slip weakening and asperities explained by thermal pressurization. Nature 436:689–692

    Article  Google Scholar 

  • Yang JJ, Huang MX, Wu QY, Zhang HR (2014a) Coesite-bearing eclogite breccia: implication for coseismic ultrahigh-pressure metamorphism and the rate of the process. Contrib Mineral Petrol 167:1013

    Article  Google Scholar 

  • Yang JJ, Fan ZF, Yu C, Yan R (2014b) Coseismic formation of eclogite facies cataclasite dykes at Yangkou in the Chinese Su-Lu UHP metamorphic belt. J Metamorph Geol 32:937–960

    Article  Google Scholar 

  • Zhang RY, Liou JG (1996) Coesite inclusions in dolomite from eclogite in the southern Dabie Mountains, China: the significance of carbonate minerals in UHPM rocks. Am Miner 81:181–186

    Google Scholar 

  • Zhang RY, Liou JG (1997) Partial transformation of gabbro to coesite-bearing eclogite from Yankou, the Sulu terrane, eastern China. J Metamorph Geol 15:183–202

    Article  Google Scholar 

  • Zhao ZY, Wei CJ, Fang AM (2005) Plastic flow of coesite eclogite in a deep continent subduction regime: microstructures, deformation mechanisms and rheological implications. Earth Planet Sci Lett 237:209–222

    Article  Google Scholar 

Download references

Acknowledgments

I thank the Natural Sciences and Engineering Research Council of Canada for a discovery grant. The constructive reviews by Drs. Jochen Hoefs, Masaaki Obata and John Spray are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaocheng Ji.

Additional information

Communicated by Jochen Hoefs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, S. Discussion on “Coesite-bearing eclogite breccia: implication for coseismic ultrahigh-pressure metamorphism and the rate of the process” by Yang et al. (Contrib. Mineral. Petrol., 2014a, 167: 1013). Contrib Mineral Petrol 170, 1 (2015). https://doi.org/10.1007/s00410-015-1154-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1154-3

Keywords

Navigation