Skip to main content
Log in

Optical anisotropy, zoning, and coexistence of two cubic phases in andradites from Quebec and New York

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The crystal structure of two zoned birefringent andradite garnets, ideally Ca3Fe2 3+Si3O12, from (1) Black Lake, Quebec (QC) and (2) Willsboro, New York (NY), was refined with the Rietveld method, space group \( Ia\overline{3} d \), and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron probe microanalyzer results gave bulk or average compositions as follows: (1) Ca3[Fe 3+1.92 Al0.07Mn 3+0.01 Mg0.01]Σ2Si3O12, Adr96Grs3 and (2) {Ca2.99Mg0.01Mn 2+0.01 }Σ3[Fe 3+1.52 Al0.47Ti0.01]Σ2(Si2.98Al0.02)Σ3O12, Adr76Grs23. The HRPXRD data show the coexistence of two cubic phases as intergrowths in both samples. Phase-1a of the QC sample-1 has a composition of near-end-member andradite, and phase-1b is Adr91Grs9. For the NY sample-2, phase-2a is Adr76Grs23 and phase-2b is Adr59Grs39. The reduced χ2 and overall R (F 2) Rietveld refinement values are 1.074 and 0.0268 for the QC sample, and 1.172 and 0.0333 for the NY sample. For the QC sample, the weight percentage and unit-cell parameter for phase-1a are 67.0(1) % and a = 12.06077(1) Å, and those for phase-1b are 33.0(1) % and a = 12.0535(1) Å with Δa = 0.007 Å. For the NY sample, the corresponding values for phase-2a are 81.3(1) % and a = 12.00456(1) Å, and those for phase-2b are 18.7(1) % and a = 11.96687(1) Å with Δa = 0.038 Å. The two cubic phases are intergrown and cause strain that arises from structural mismatch and gives rise to strain-induced birefringence. The above two samples are compared to andradite samples from Arizona and Magnet Cove.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adamo I, Gatta GD, Rotitoti N, Diella V, Pavese A (2010) Green andradite stones: gemological and mineralogical characterisation. Eur J Mineral 23:91–100

    Article  Google Scholar 

  • Agrosì G, Schingaro E, Pedrazzi G, Scandale E, Scordari R (2002) A crystal chemical insight into sector zoning of a titanian andradite (‘melanite’) crystal. Eur J Mineral 14:785–794

    Article  Google Scholar 

  • Allen VT, Fahey JL (1957) Some pyroxenes associated with pyrometasomatic zinc deposits in Mexico and New Mexico. Geol Soc Am Bull 68:881–895

    Article  Google Scholar 

  • Amabili M, Spertini F, Auguste MB, Bonin G (2009) Famous mineral localities: the lac d’Amiante mine, Black Lake, Thetford mines, Quebec. Mineral Rec 40:297–304

    Google Scholar 

  • Angel R, Finger LW, Hazen RM, Kanzaki M, Weidner DJ, Liebermann RC, Veblen DR (1989) Structure and twinning of single-crystal MgSiO3 garnet synthesized at 17 GPa and 1800°C. Am Mineral 74:509–512

    Google Scholar 

  • Antao SM (2013a) Three cubic phases intergrown in a birefringent andradite–grossular garnet and their implications. Phys Chem Miner 40:705–716

    Article  Google Scholar 

  • Antao SM (2013b) Can birefringent near-endmember grossular be non-cubic? New evidence from synchrotron diffraction. Can Mineral 51:771–784

    Article  Google Scholar 

  • Antao SM (2013c) The mystery of birefringent garnet: is the symmetry lower than cubic? Powder Diffr 28:281–288

    Google Scholar 

  • Antao SM (2014a) Crystal structure of morimotoite from Ice River, Canada. Powder Diffr 29:325–330

    Article  Google Scholar 

  • Antao SM (2014b) Schorlomite and morimotoite: what’s in a name? Powder Diffr 29:346–351

    Article  Google Scholar 

  • Antao SM (2014c) Nanodomains and anisotropy in cubic garnets. In: Denver X-ray Conference, Big Sky

  • Antao SM, Klincker AM (2013a) Origin of birefringence in andradite from Arizona, Madagascar, and Iran. Phys Chem Miner 40:575–586

    Article  Google Scholar 

  • Antao SM, Klincker AM (2013b) Crystal structure of a birefringent andradite–grossular from Crowsnest Pass, Alberta, Canada. Powder Diffr 29:20–27

    Article  Google Scholar 

  • Antao SM, Round SA (2014) Crystal chemistry of birefringent spessartine. Powder Diffr 29:233–240

    Article  Google Scholar 

  • Antao SM, Hassan I, Wang J, Lee PL, Toby BH (2008) State-of-the-art high-resolution powder X-ray diffraction (HRPXRD) illustrated with Rietveld structure refinement of quartz, sodalite, tremolite, and meionite. Can Mineral 46:1501–1509

    Article  Google Scholar 

  • Antao SM, Klincker AM, Round SA (2013a) Origin of birefringence in common silicate garnet: intergrowth of different cubic phases, American Geophysical Union

  • Antao SM, Klincker AM, Round SA (2013b) Some garnets are cubic and birefringent, why?, American Crystallographic Association

  • Antao SM, Zaman M, Klincker AM, Round SA, Gontijo VL, Camargo ES, Garnet (2014) Intergrowths, multi-phases, and optical anisotropy, Geological Society of America

  • Armbruster T, Geiger CA (1993) Andradite crystal chemistry, dynamic X-site disorder and structural strain in silicate garnets. Eur J Mineral 5:59–71

    Article  Google Scholar 

  • Armbruster T, Birrer J, Libowitzky E, Beran A (1998) Crystal chemistry of Ti-bearing andradites. Eur J Mineral 10:907–921

    Article  Google Scholar 

  • Bank H (1982) Über grossular und hydrogrossular. Z Deutsch Gemmol Ges 31:93–96

    Google Scholar 

  • Cagliotti G, Paoletti A, Ricci FP (1958) Choice of collimators for a crystal spectrometer for neutron diffraction. Nucl Instrum 3:223–228

    Article  Google Scholar 

  • Clechenko CC, Valley JW (2003) Oscillatory zoning in garnet from the Willsboro Wollastonite Skarn, Adirondack Mts, New York: a record of shallow hydrothermal processes preserved in a granulite facies terrane. J Metamorph Geol 21:771–784

    Article  Google Scholar 

  • Cussen EJ (2010) Structure and ionic conductivity in lithium garnets. J Mater Chem 20:5167–5173

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1982) Rock-forming minerals, vol 1A. Orthosilicates. Longman Group Limited, New York

  • Evans BW, Johannes J, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Flohr MJK, Ross M (1989) Alkaline igneous rocks of Magnet Cove, Arkansas: metasomatized ijolite xenoliths from Diamond Jo quarry. Am Mineral 74:113–131

    Google Scholar 

  • Ganguly J, Cheng W, O’Neill HSC (1993) Syntheses, volume, and structural changes of garnets in the pyrope–grossular join: implications for stability and mixing properties. Am Mineral 78:583–593

    Google Scholar 

  • Hariya Y, Kimura M (1978) Optical anomaly garnet and its stability at high pressures and temperatures. J Fac Sci, Hokkaido Univ, Series IV 18:611–624

    Google Scholar 

  • Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)–pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24:206–221

    Article  Google Scholar 

  • Hirai H, Nakazawa H (1986a) Visualizing low symmetry of a grandite garnet on precession photographs. Am Mineral 71:1210–1213

    Google Scholar 

  • Hirai H, Nakazawa H (1986b) Grandite garnet from Nevada: confirmation of origin of iridescence by electron microscopy and interpretation of a moiré-like texture. Am Mineral 71:123–126

    Google Scholar 

  • Jamtveit B (1991) Oscillatory zonation patterns in hydrothermal grossular–andradite garnet: nonlinear dynamics in regions of immiscibility. Am Mineral 76:1319–1327

    Google Scholar 

  • Jamtveit B, Hervig RL (1994) Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 263:505–508

    Article  Google Scholar 

  • Jamtveit B, Wogelius RA, Fraser DG (1993) Zonation patterns of skarn garnets: records of hydrothermal system evolution. Geology 21:113–116

    Article  Google Scholar 

  • Kitamura K, Komatsu H (1978) Optical anisotropy associated with growth striation of yttrium garnet, Y3(Al, Fe)5O12. Kristall Tech 13:811–816

    Article  Google Scholar 

  • Koritnig S, Rösch H, Schneider A, Seifert F (1978) Der Titan-zirkon-granat aus den Kalksilikatfels-Einschlüssen des Gabbro im Radautal, Harz, Bundesrepublik Deutschland. Tschermaks Mineral Petrogr Mitt 25:305–313

    Article  Google Scholar 

  • Lager GA, Armbruster T, Rotella FJ, Rossman GR (1989) OH substitution in garnets: X-ray and neutron diffraction, infrared, and geometric-modeling studies. Am Mineral 74:840–851

    Google Scholar 

  • Larson AC, Von Dreele RB (2000) General structure analysis system (GSAS). Los Alamos National Laboratory Report, LAUR 86-748

  • Lee CG, Atkinson WWJ (1985) Geochemistry of zoned garnets from the San Pedro Mine, Santa Fe County, New Mexico. N M Geol 7:69–74

    Google Scholar 

  • Lee PL, Shu D, Ramanathan M, Preissner C, Wang J, Beno MA, Von Dreele RB, Ribaud L, Kurtz C, Antao SM, Jiao X, Toby BH (2008) A twelve-analyzer detector system for high-resolution powder diffraction. J Synchrotron Radiat 15:427–432

    Article  Google Scholar 

  • Locock AJ (2008) An excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

    Article  Google Scholar 

  • Manning PG, Owens DR (1977) Electron microprobe, X-ray diffraction, and spectral studies of South African and British Columbian “jades”. Can Mineral 15:512–517

    Google Scholar 

  • Müntener O, Hermann J (1994) Titanian andradite in a metapyroxenite layer from the Malenco ultramafics (Italy): implications for Ti-mobility and low oxygen fugacity. Contrib Mineral Petrol 116:156–168

    Article  Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ohtaka O, Katsura T, Ito E (1999a) Symmetry change of majorite solid-solution in the system Mg3Al2Si3O12–MgSiO3. Am Mineral 84:1135–1143

    Google Scholar 

  • Nakatsuka A, Yoshiasa A, Yamanaka T, Ito E (1999b) Structure refinement of a birefringent Cr-bearing majorite Mg3(Mg0.34Si0.34Al0.18Cr0.14)2Si3O12. Am Mineral 84:199–202

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:1769–1780

    Google Scholar 

  • Parise JB, Wang Y, Gwanmesia GD, Zhang J, Sinelnikov Y, Chmielowski J, Weidner DJ, Liebermann RC (1996) The symmetry of garnets on the pyrope (Mg3Al2Si3O12)–majorite (MgSiO3) join. Geophys Res Lett 23:3799–3802

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Schingaro E, Scordari F, Pedrazzi G, Malitesta C (2004) Ti and Fe speciation by X-ray photoelectron spectroscopy (XPS) and mössbauer spectroscopy for a full crystal chemical characterisation of Ti-garnets from Colli Albani (Italy). Anal Chim 94:185–196

    Article  Google Scholar 

  • Scordari F, Schingaro E, Pedrazzi G (1999) Crystal chemistry of melanites from Mt. Vulture (Southern Italy). Eur J Mineral 11:855–869

    Article  Google Scholar 

  • Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Can Mineral 34:1111–1126

    Google Scholar 

  • Thompson P, Cox DE, Hastings JB (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from alumina. J Appl Crystallogr 20:79–83

    Article  Google Scholar 

  • Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  Google Scholar 

  • Valley JW, O’Neil JR (1982) Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. Nature 300:497–500

    Article  Google Scholar 

  • Valley JW, Bohlen SR, Essene EJ, Lamb W (1990) Metamorphism in the Adirondacks: II. The role of fluids. J Petrol 31:555–596

    Article  Google Scholar 

  • Wang J, Toby BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79:085105

    Article  Google Scholar 

  • Whitney PR, Olmsted JF (1998) Rare earth element metasomatism in hydrothermal systems: the Willsboro-Lewis wollastonite ores, New York, USA. Geochim Cosmochim Acta 62:2965–2977

    Article  Google Scholar 

  • Zabinski W (1966) Hydrogarnets. Polska Akademia Nauk, Oddzial Krakowie, Komisja Nauk Mineralogicznych, Prace Mineralogiczne 3:1–69

    Google Scholar 

Download references

Acknowledgments

Two anonymous reviewers and the Editor, Gordon Moore, are thanked for useful comments that improved this manuscript. John W. Valley is thanked for his comments on the NY sample. M. Horvath made the thin sections. The HRPXRD data were collected at the X-ray Operations and Research beamline 11-BM, Advanced Photon Source (APS), Argonne National Laboratory (ANL). Use of the APS was supported by the U.S. Dept. of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This work was supported with a NSERC Discovery Grant to SMA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sytle M. Antao.

Additional information

Communicated by Gordon Moore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antao, S.M., Zaman, M., Gontijo, V.L. et al. Optical anisotropy, zoning, and coexistence of two cubic phases in andradites from Quebec and New York. Contrib Mineral Petrol 169, 10 (2015). https://doi.org/10.1007/s00410-015-1104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-015-1104-0

Keywords

Navigation