Skip to main content
Log in

Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The crystal structures of synthetic K-dravite [XKYMg Z3 Al T6 Si6O18(BO3) V3 (OH) W3 (OH)], dravite [XNaYMg Z3 Al T6 Si6O18(BO3) V3 (OH) W3 (OH)], oxy-uvite [XCaYMg Z3 Al T6 Si6O18(BO3) V3 (OH) W3 O], and magnesio-foitite [XY(Mg2Al)ZAl T6 Si6O18(BO3) V3 (OH) W3 (OH)] are investigated by polarized Raman spectroscopy, single-crystal structure refinement (SREF), and powder X-ray diffraction. The use of compositionally simple tourmalines characterized by electron microprobe analysis facilitates the determination of site occupancy in the SREF and band assignment in the Raman spectra. The synthesized K-dravite, oxy-uvite, and magnesio-foitite have significant Mg–Al disorder between their octahedral sites indicated by their respective average 〈Y–O〉 and 〈Z–O〉 bond lengths. The Y- and Z-site compositions of oxy-uvite (YMg1.52Al1.48(10) and ZAl4.90Mg1.10(15)) and magnesio-foitite (YAl1.62Mg1.38(18) and ZAl4.92Mg1.08(24)) are refined from the electron densities at each site. The Mg–Al ratio of the Y and Z sites is also determined from the relative integrated peak intensities of the Raman bands in the O–H stretching vibrational range (3250–3850 cm−1), producing values in good agreement with the SREF data. The unit cell volume of tourmaline increases from magnesio-foitite (1558.4(3) Å3) to dravite (1569.5(4)–1571.7(3) Å3) to oxy-uvite (1572.4(2) Å3) to K-dravite (1588.1(2) Å3), mainly due to lengthening of the crystallographic c-axis. The increase in the size of the X-site coordination polyhedron from dravite (Na) to K-dravite (K) is accommodated locally in the crystal structure, resulting in the shortening of the neighboring O1H1 bond. In oxy-uvite, Ca2+ is locally associated with a deprotonated W (O1) site, whereas vacant X sites are neighbored by protonated W (O1) sites. Increasing the size of the X-site-occupying ion does not detectably affect bonding between the other sites; however, the higher charge of Ca and the deprotonated W (O1) site in oxy-uvite are correlated to changes in the lattice vibration Raman spectrum (100–1200 cm−1), particularly for bands assigned to the T 6O18 ring. The Raman spectrum of magnesio-foitite shows significant deviations from those of K-dravite, dravite, and oxy-uvite in both the lattice and O–H stretching vibrational ranges (100–1200 and 3250–3850 cm−1, respectively). The vacant X site is correlated with long- and short-range changes in the crystal structure, i.e., deformation of the T 6O18 ring and lengthening of the O1H1 and O3H3 bonds. However, X-site vacancies in K-dravite, dravite, and oxy-uvite result only in the lengthening of the neighboring O1H1 bond and do not result in identifiable changes in the lattice-bonding environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong JT (1995) CITZAF: a package of correction programs for the quantitative electron microbeam X-ray analysis of thick polished materials, thin films, and particles. Microbeam Anal 4:177–200

    Google Scholar 

  • Berryman E, Wunder B, Rhede D (2014) Synthesis of K-dominant tourmaline. Am Mineral 99:539–542

    Article  Google Scholar 

  • Berryman EJ, Wunder B, Wirth R, Rhede D, Schettler G, Franz G, Heinrich W (2015) An experimental study on K and Na incorporation in dravitic tourmaline and insight into the formation environment of diamoniferous tourmaline from the Kokchetav, Massif, Kazakhstan. Contrib Mineral Petrol 169:28. doi:10.1007/s00410-015-116-9

    Article  Google Scholar 

  • Bloodaxe ES, Hughes JM, Dyar MD, Grew ES, Guidotti CV (1999) Linking structure and chemistry in the Schorl-Dravite series. Am Mineral 84:922–928

    Article  Google Scholar 

  • Bosi F, Lucchesi S (2007) Crystal chemical relationships in the tourmaline group: structural constraints on chemical variability. Am Mineral 92:1054–1063

    Article  Google Scholar 

  • Bosi F, Skogby H, Lazor P, Reznitskii L (2015) Atomic arrangements around the O3 site in Al- and Cr-rich oxy-tourmalines: a combined EMP, SREF, FTIR and Raman study. Phys Chem Mineral 42:441–453. doi:10.1007/s00269-015-0735-z

    Article  Google Scholar 

  • Branscomb LM (1966) Photodetachment cross section, electron affinity, and structure of the negative hydroxyl ion. Phys Rev 148:11. doi:10.1103/PhysRev.148.11

    Article  Google Scholar 

  • Buerger M, Parrish W (1937) The unit cell and space group of tourmaline (an example of the inspective equi-inclination treatment of trigonal crystals). Am Mineral 22:1139–1150

    Google Scholar 

  • Dietrich RV (1985) The tourmaline group. Van Nostrand Reinhold Company Inc., New York

    Book  Google Scholar 

  • Donnay G, Buerger MJ (1950) The determination of the crystal structure of tourmaline. Acta Crystallogr A 3:379–388

    Article  Google Scholar 

  • Ertl A, Tillmanns E (2012) The [9]-coordinated X site in the crystal structure of tourmaline-group minerals. Z Kristallogr 227:456–459

    Article  Google Scholar 

  • Ertl A, Tillmanns E, Ntaflos T, Francis C, Giester G, Körner W, Hughes JM, Lengauer C, Prem M (2008) Tetrahedrally coordinated boron in Al-rich tourmaline and its relationship to pressure-temperature conditions of formation. Eur J Mineral 20:881–888

    Article  Google Scholar 

  • Ertl A, Marschall HR, Giester G, Henry DJ, Schertl H-P, Ntaflos T, Luvizotto GL, Nasdala L, Tillmanns E (2010) Metamorphic ultrahigh-pressure tourmaline: structure, chemistry, and correlations to PT conditions. Am Mineral 95:1–10

    Article  Google Scholar 

  • Ertl A, Giester G, Ludwig T, Meyer H-P, Rossman GR (2012) Synthetic B-rich olenite: correlations of single-crystal structural data. Am Mineral 97:1591–1597

    Article  Google Scholar 

  • Fantini C, Tavares MC, Krambrock K (2014) Raman and infrared study of hydroxyl sites in natural uvite, fluor-uvite, magnesio-foitite, dravite and elbaite tourmalines. Phys Chem Miner 41:247–254

    Article  Google Scholar 

  • Fischer RX, Tillmanns E (1988) The equivalent isotropic displacement factor. Acta Crystallogr A C44:775–776

    Google Scholar 

  • Gasharova B, Mihailova B, Konstantinov L (1997) Raman spectra of various types of tourmaline. Eur J Miner 9:935–940

    Article  Google Scholar 

  • Gatta GD, Danisi RM, Adamo I, Meven M, Diella V (2012) A single-crystal neutron and X-ray diffraction study of elbaite. Phys Chem Miner 39:577–588

    Article  Google Scholar 

  • Gatta GD, Bosi F, McIntyre GJ, Skogby H (2014) First accurate location of two proton sites in tourmaline: a single-crystal neutron diffraction study of oxy-dravite. Mineral Mag 78:681–692

    Article  Google Scholar 

  • Geisinger KL, Spackman MA, Gibbs GV (1987) Exploration of structure, electron density distribution, and bonding in coesite with fourier and pseudoatom refinement methods using single-crystal X-ray diffraction. J Phys Chem 91:3237–3244

    Article  Google Scholar 

  • Genkina EA, Malinovskii YA (1983) Refinement of the structure of pinooite: location of hydrogen atoms. Kristallografiya (Sov Phys Cryst) 28:803–805

    Google Scholar 

  • Gonzalez-Carreño T, Fernández M, Sanz J (1988) Infrared and electron microprobe analysis of tourmalines. Phys Chem Mineral 15:452–460

    Article  Google Scholar 

  • Grice JD, Ercit TS, Hawthorne FC (1993) Povondraite, a redefinition of the tourmaline ferridravite. Am Mineral 78:433–436

    Google Scholar 

  • Hamburger GE, Buerger MJ (1948) The structure of tourmaline. Am Mineral 33:532–540

    Google Scholar 

  • Hawthorne FC, Henry DJ (1999) Classification of the minerals of the tourmaline group. Eur J Mineral 11:201–215

    Article  Google Scholar 

  • Hawthorne FC, Selway JB, Kato A, Matsubara S, Shimizu M, Grice JD, Vajdak J (1999) Magnesiofoitite, ☐(Mg2Al)Al6(Si6O18)(BO3)3(OH)4, a new alkali-deficient tourmaline. Can Mineral 37:1439–1443

    Google Scholar 

  • Henry DJ, Dutrow BL (1996) Metamorphic tourmaline and its petrologic applications. In: Grew ES, Anvitz LM (eds) Boron: mineralogy, petrology and geochemistry, reviews in mineralogy and geochemistry, vol 33., Mineral Soc AmChantilly, Virginia, pp 503–557

    Google Scholar 

  • Henry DJ, Novák M, Hawthorne FC, Ertl A, Dutrow BL, Uher P, Pezzotta F (2011) Nomenclature of the tourmaline-supergroup minerals. Am Mineral 96:895–913

    Article  Google Scholar 

  • Kahlenberg V, Veličkov B (2000) Structural investigations on a synthetic alkali-free hydrogen-deficient Fe-tourmaline (foitite). Eur J Mineral 12:947–953

    Article  Google Scholar 

  • Larson AC, Von Dreele RB (1987) Generalized structure analysis system. Los Alamos National Laboratory Report LA-UR-86-748

  • Lussier A, Ball NA, Hawthorne FC, Henry DJ, Shimizu R, Ogasawara Y, Ota T (2014) Maruyamaite, IMA 2013-123. CNMNC Newsletter No. 20, June 2014. Mineral Mag 78:549–558

    Article  Google Scholar 

  • MacDonald DJ, Hawthorne FC (1995) The crystal chemistry of Si−Al substitution in tourmaline. Can Mineral 33:849–858

    Google Scholar 

  • Martínez-Alonso S, Rustad JR, Goetz AFH (2002) Ab initio quantum mechanical modeling of infrared vibrational frequencies of the OH group in dioctahedral phyllosilicates. Part II: main physical factors governing the OH vibrations. Am Mineral 87:1224–1234

    Article  Google Scholar 

  • McKeown DA (2008) Raman spectroscopy, vibrational analysis, and heating of buergerite tourmaline. Phys Chem Miner 35:259–270

    Article  Google Scholar 

  • Mihailova B, Gasharova B, Konstantinov L (1996) Influence of non-tetrahedral cations on Si–O vibrations in complex silicates. J Raman Spectrosc 27:829–833

    Article  Google Scholar 

  • Mirwald PW, Massonne H-J (1980) Quartz-coesite transition and the comparative friction measurements in piston-cylinder apparatus using talc-alsimag-glass (TAG) and NaCl high pressure cells: a discussion. Neues Jahrbuch für Mineralogie 1980:469–477

    Google Scholar 

  • Peacor DR, Rouse RC, Grew ES (1999) Crystal structure of boralsilite and its relation to a family of boroaluminosilicates, sillimanite, and andalusite. Am Mineral 84:1152–1161

    Article  Google Scholar 

  • Pertlik F, Ertl A, Körner W, Brandstätter F, Schuster R (2003) Na-rich dravite in the marbles from Friesach, Carintha, Austria: chemistry and crystal structure. Neues Jahrbuch Mineralogie Monatshefte 2003:277–288

    Article  Google Scholar 

  • Rosenberg PE, Foit FF Jr (1979) Synthesis and characterization of alkali-free tourmaline. Am Mineral 64:180–186

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Article  Google Scholar 

  • Sheldrick GM (1997) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  • Skogby H, Bosi F, Lazor P (2012) Short-range order in tourmaline: a vibrational spectroscopic approach to elbaite. Phys Chem Miner 39:811–816

    Article  Google Scholar 

  • Veličkov B (2002) Kristallchemie von Fe,Mg-Turmalinen: Synthese und spektroskopische Untersuchungen. Dissertation, Technische Universität Berlin

  • von Goerne G, Franz G (2000) Synthesis of Ca-tourmaline in the system CaO–MgO–Al2O3–SiO2–B2O3–H2O–HCl. Mineral Petrol 69:161–182

    Article  Google Scholar 

  • von Goerne G, Franz G, Wirth R (1999) Hydrothermal synthesis of large dravite crystals by the chamber method. Eur J Mineral 11:1061–1077

    Article  Google Scholar 

  • von Goerne G, Franz G, Heinrich W (2001) Synthesis of tourmaline solid solutions in the system Na2O–MgO–Al2O3–SiO2–B2O3–H2O–HCl and the distribution of Na between tourmaline and fluid at 300 to 700 C and 200 MPa. Contrib Miner Petrol 141:160–173

    Article  Google Scholar 

  • Žáček V, Frýda J, Petrov A, Hyršl J (2000) Tourmalines of the povondraite—(oxy)dravite series from the cap rock of meta-evaporite in Alto Chapare, Cochabamba, Bolivia. J Czech Geol Soc 45:3–12

    Google Scholar 

  • Zhao C, Liao L, Xia Z, Sun X (2012) Temperature-dependent Raman and infrared spectroscopy study on iron-magnesium tourmalines with different Fe content. Vib Spectrosc 62:28–34

    Article  Google Scholar 

  • Zhukhlistov AP, Zvyagin BB, Soboleva SV, Fedotov AF (1973) The crystal structure of the dioctahedral mica 2M2 determined by high voltage electron diffraction. Clays Clay Miner 21:465–470

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to H.-P. Nabein for assistance in generating the powder XRD data and conducting the hydrothermal synthesis experiments; U. Dittmann for preparing the samples for EMPA; G. Franz for critical reading of the final manuscript; and D. Henry and B. Gasharova for their careful reviews. This study was supported by funding from the Deutsche Forschungsgemeinschaft granted to G. Franz and WH (FR 557/31-1; HE 2015/16-1) and by the Austrian Science Fund (FWF) project No. P-26903-N19 granted to AE. EJB is grateful for a postgraduate scholarship awarded by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. J. Berryman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berryman, E.J., Wunder, B., Ertl, A. et al. Influence of the X-site composition on tourmaline’s crystal structure: investigation of synthetic K-dravite, dravite, oxy-uvite, and magnesio-foitite using SREF and Raman spectroscopy. Phys Chem Minerals 43, 83–102 (2016). https://doi.org/10.1007/s00269-015-0776-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00269-015-0776-3

Keywords

Navigation