Skip to main content
Log in

Origin and significance of poikilitic and mosaic peridotite xenoliths in the western Pannonian Basin: geochemical and petrological evidences

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Peridotite xenoliths erupted by alkali basaltic volcanoes in the western Pannonian Basin can be divided into two fundamentally contrasting groups. Geochemical characteristics of the abundant protogranular, porphyroclastic and equigranular nodules suggest that these samples originate from an old consolidated and moderately depleted lithospheric mantle domain. In contrast, the geochemical features of the worldwide rare, but in the Pannonian Basin relatively abundant, poikilitic xenoliths attest to a more complex evolution. It has been argued that the origin of the peculiar texture and chemistry may be intimately linked to melt/rock reactions at successively decreasing liquid volumes in a porous melt flow system. The most likely site where such reactions can take place is the asthenosphere–lithosphere boundary. In this context, poikilitic xenoliths may provide petrological and geochemical evidence for reactions between magmatic liquids issued from the uprising asthenosphere and the solid mantle rocks of the lithosphere. These reactions are important agents of the thermal erosion of the lithosphere; thus, they could have considerably contributed to the thinning of the lithosphere in the Pannonian region. We suggest that in the Pannonian Basin, there could be a strong relation between the unusual abundance of poikilitic mantle xenoliths and the strongly eroded lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arai S (1987) An estimation of the least depleted spinel peridotite on the basis of olivine-spinel mantle array. Neues Jahrbuch für Mineralogie, Monatshefte 8:347–354

    Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Ave Lallemant HG, Mercier J-CC, Carter NL, Ross JV (1980) Rheology of the upper mantle: inferences from peridotite xenoliths. Tectonophysics 70:5–113

    Article  Google Scholar 

  • Bascou J, Delpech G, Vauchez A, Moine BN, Cottin J-Y, Barruol G (2008) An integrated study of microstructural, geochemical and seismic properties of lithospheric mantle above the Kerguelen plume (Indian Ocean). Geochem Geophys Geosyst 9:Q04036. doi:10.1029/2007GC001879

    Google Scholar 

  • Bedini RM, Bodinier J-L (1999) Distribution of incompatible trace elements between the constituents of spinel peridotite xenoliths: ICP-MS data from the East African Rift. Geochim Cosmochim Acta 63:3883–3900

    Article  Google Scholar 

  • Bedini RM, Bodinier J-L, Dautria J-M, Morten L (1997) Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift. Earth Planet Sci Lett 153:67–83

    Article  Google Scholar 

  • Berger ET (1978) Origine cumulatique des enclaves de péridotites a structure poecilitique et tabulaire a gros grains, comparaison avec les tectonites: conséquences sur l’interprétation de la structure du manteau supérieur, ses relations avec la croute inférieure et l’origine des basaltes alcalins. Bull Mineral 101:506–514

    Google Scholar 

  • Blundy J, Dalton J (2000) Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism. Contrib Mineral Petrol 139:356–371

    Article  Google Scholar 

  • Bodinier J-L, Merlet C, Bedini RM, Simien F, Remaidi M, Garrido CJ (1996) Distribution of niobium, tantalum, and other highly incompatible trace elements in the lithospheric mantle: the spinel paradox. Geochim Cosmochim Acta 60:545–550

    Article  Google Scholar 

  • Bodinier J-L, Menzies MA, Shimizu N, Frey FA, McPherson E (2004) Silicate, hydrous and carbonate metasomatism at Lherz, France: contemporaneous derivatives of silicate melt-harzburgite reaction. J Petrol 45:299–320

    Article  Google Scholar 

  • Bosch D, Blichert-Toft J, Moynier F, Nelson BK, Telouk P, Gillot PY, Albarède F (2008) Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): a tale of two small-scale mantle “blobs”? Earth Planet Sci Lett 265:355–368

    Article  Google Scholar 

  • Brey GP, Köhler TP (1990) Geothermobarometry in four phase lherzolites II. New thermometers, and practical assessment of existing thermometers. J Petrol 31:1353–1378

    Article  Google Scholar 

  • Chakhmouradian AR (2006) High-field-strength elements in carbonatitic rocks: geochemistry, crystal chemistry and significance for constraining the sources of carbonatites. Chem Geol 235:138–160

    Article  Google Scholar 

  • Dautria J-M, Dupuy C, Takherist D, Dostal J (1992) Carbonate metasomatism in the lithospheric mantle: peridotitic xenoliths from a melilititic district of the Sahara basin. Contrib Mineral Petrol 111:37–52

    Article  Google Scholar 

  • Demény A, Dallai L, Frezzotti ML, Vennemann TW, Embey-Isztin A, Dobosi G, Nagy G (2010) Origin of CO2 and carbonate veins in mantle-derived xenoliths in the Pannonian Basin. Lithos 117:172–182

    Article  Google Scholar 

  • Dick HJB, Bullen T (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib Mineral Petrol 86:54–76

    Article  Google Scholar 

  • Dobosi G, Jenner GA (1999) Petrologic implications of trace element variation in clinopyroxene megacrysts from the Nógrád volcanic province, north Hungary: a study by laser ablation microprobe—inductively coupled plasma-mass spectrometry. Lithos 46:731–749

    Article  Google Scholar 

  • Dobosi G, Downes H, Embey-Isztin A, Jenner GA (2003) Origin of megacrysts and pyroxenite xenoliths from the Pliocene alkali basalts of the Pannonian Basin (Hungary). N Jb Miner Abh 178:217–237

    Article  Google Scholar 

  • Dobosi G, Jenner G, Embey-Isztin A, Downes H (2010) Cryptic metasomatism in clino- and orthopyroxene in the upper mantle beneath the Pannonian region. In: Coltorti M (ed) Petrological evolution of the European lithospheric mantle: from Archaean to present day. Geol Soc, London, p 337

    Google Scholar 

  • Downes H, Dupuy C (1987) Textural, isotopic and REE variations in spinel peridotite xenoliths, Massif Central, France. Earth Planet Sci Lett 82:121–135

    Article  Google Scholar 

  • Downes H, Embey-Isztin A, Thirlwall MF (1992) Petrology and geochemistry of spinel peridotite xenoliths from the western Pannonian Basin (Hungary): evidence for an association between enrichment and texture in the upper mantle. Contrib Mineral Petrol 109:340–354

    Article  Google Scholar 

  • Downes H, Pantó Gy, Póka T, Mattey DP, Greenwood PB (1995) Calc-alkaline volcanics of the Inner Carpathian arc, northern Hungary: new geochemical and oxygen isotopic results. Acta Vulcanol 7:29–41

    Google Scholar 

  • Embey-Isztin A (1984) Texture types and their relative frequencies in ultramafic and mafic xenoliths from Hungarian alkali basaltic rocks. Annls hist-nat Mus natn hung 76:27–42

    Google Scholar 

  • Embey-Isztin A, Scharbert HG, Dietrich H, Poultidis H (1989) Petrology and geochemistry of peridotite xenoliths in alkali basalts from the Transdanubian Volcanic Region, West Hungary. J Petrol 30:79–105

    Article  Google Scholar 

  • Embey-Isztin A, Downes H, James DE, Upton BGJ, Dobosi G, Scharbert HG, Ingram GA (1993) The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe. J Petrol 34:317–343

    Article  Google Scholar 

  • Embey-Isztin A, Dobosi G, Altherr R, Meyer H-P (2001) Thermal evolution of the lithosphere beneath the western Pannonian Basin: evidence from deep-seated xenoliths. Tectonophysics 331:283–305

    Article  Google Scholar 

  • Fabriès J (1979) Spinel-olivine geothermometry in peridotites from ultramafic complexes. Contrib Mineral Petrol 69:329–336

    Article  Google Scholar 

  • Falus Gy, Szabó Cs (2004) Felsőköpeny eredetű xenolitok Tihanyról: nyomonkövethető litoszférafejlődés a Bakony–Balaton-felvidék vulkáni területén? (Upper mantle xenoliths from Tihany: traceable lithospheric evolution in the Bakony-Balaton Highland Volcanic Field?). Földtani Közlöny 134(4):499–520

    Google Scholar 

  • Féménias O, Mercier J-CC, Demaiffe D (2001) Pétrologie des xénolites ultramafiques du puy Beaunit (Massif central français: un gisment atypique du manteau sous-continental. CR Acad Sci Paris IIA 332:535–542

    Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Garrido CJ, Bodinier J-L, Alard O (2000) Incompatible trace element partitioning and residence in anhydrous spinel peridotites and websterites from the Ronda orogenic peridotite. Earth Planet Sci Lett 181:341–358

    Article  Google Scholar 

  • Godard M, Jousselin D, Bodinier J-L (2000) Relationships between geochemistry and structure beneath a palaeo-spreading centre: a study of the mantle section in the Oman Ophiolite. Earth Planet Sci Lett 180:133–148

    Article  Google Scholar 

  • Grégoire M, Lorand JP, Cottin J-Y, Giret A, Mattielli N, Weis D (1997) Xenoliths evidence for a refractory oceanic mantle percolated by basaltic melts beneath the Kerguelen archipelago. Eur J Mineral 9:1085–1100

    Article  Google Scholar 

  • Harangi Sz, Downes H, Thirlwall M, Gméling K (2007) Geochemistry, petrogenesis and geodynamic relationships of miocene calc-alkaline volcanic rocks in the Western Carpathian arc, eastern central Europe. J Petrol 48:2261–2287

    Article  Google Scholar 

  • Hart SR (1984) A large scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Harte B, Hunter RH, Kinny PD (1993) Melt geometry, movement and crystallization in relations to mantle dykes, veins and metasomatism. Philos Trans R Soc Lond Ser A 34:1–21

    Article  Google Scholar 

  • Hauri EH, Shimuzu N, Dieu JJ, Hart SR (1993) Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365:221–227

    Article  Google Scholar 

  • Horváth F (1993) Towards a mechanical model for the formation of the Pannonian basin. Tectonophysics 226:333–357

    Article  Google Scholar 

  • Ionov DA, Savoyant L, Dupuy C (1992) Application of the ICPMS technique to trace element analysis of peridotites and their minerals. Geostandards Newsletter 16:311–315

    Article  Google Scholar 

  • Ionov DA, Dupuy C, O’Reilly SY, Kopylova MG, Genshaft YS (1993) Carbonated peridotite xenoliths from Spitsbergen: implications for trace element signature of mantle carbonate metasomatism. Earth Planet Sci Lett 119:283–297

    Article  Google Scholar 

  • Ionov DA, Hofmann AW, Shimizu N (1994) Metasomatism-induced Melting in Mantle Xenoliths from Mongolia. J Petrol 35(3):753–785

    Article  Google Scholar 

  • Ionov DA, Mukasa SB, Bodinier J-L (2002) Sr–Nd–Pb isotopic compositions of peridotite xenoliths from Spitsbergen: numerical modeling indicates Sr–Nd decoupling in the mantle by melt percolation metasomatism. J Petrol 43:2261–2278

    Article  Google Scholar 

  • Jochum KP, Seufert HM, Thirlwall MF (1990) High-sensitivity Nb analysis by spark-source mass spectrometry (SSMS) and calibration of XRF Nb and Zr. Chem Geol 81:1–16

    Article  Google Scholar 

  • Kamenetsky VS, Crawford AJ, Meffre S (2001) Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J Petrol 42:655–671

    Article  Google Scholar 

  • Le Roux V, Bodinier J-L, Allard O, O’Reilly SY, Griffin WL (2009) Isotopic decoupling during porous melt flow: a case-study in the Lherz peridotite. Earth Planet Sci Lett 278:76–85

    Article  Google Scholar 

  • Lenoir X, Garrido CJ, Bodinier J-L, Dautria J-M, Gervilla F (2001) The recrystallization front of the Ronda peridotite: evidence for melting and thermal erosion of subcontinental lithospheric mantle beneath the Alboran Basin. J Petrol 42:141–158

    Article  Google Scholar 

  • McDonough WF, McCulloch MT (1987) The southeast Australian lithospheric mantle: isotopic and geochemical constraints on its growth and evolution. Earth Planet Sci Lett 86:327–340

    Article  Google Scholar 

  • McKenzie D (1989) Some remarks on the movement of small melt fractions in the mantle. Earth Planet Sci Lett 95:53–72

    Article  Google Scholar 

  • Menzies M (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths, pp. 92–110 Cheshire, Engl. Shiva, 272 pp

  • Mercier J-CC, Nicolas A (1975) Textures and fabrics of upper mantle peridotites as illustrated by basalt xenoliths. J Petrol 16:454–487

    Article  Google Scholar 

  • Nickel KG, Green DH (1984) The nature of the uppermost mantle beneath Victoria, Australia as deduced from ultramafic xenoliths. In: Kimberlites II, Kornprobst J (ed), pp 161–78

  • Rosenbaum JM, Wilson M, Downes H (1997) Multiple enrichment of the Carpathian-Pannonian mantle: Pb–Sr–Nd isotope and trace element constraints. J Geophys Res 102:14947–14961

    Article  Google Scholar 

  • Royden LH, Horváth F, Nagymarosy A, Stegena L (1983) Evolution of the Pannonian basin system: 2. Subsidence and thermal history. Tectonics 2:91–137

    Article  Google Scholar 

  • Rudnick RL, McDonough WF, Chappell BW (1993) Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics. Earth Planet Sci Lett 114:463–476

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) The composition of the depleted mantle. Geochem Geophys Geosyst 5: Q05B07, 27 pp

  • Salters VJM, Hart SR, Pantó Gy (1988) Origin of late Cenozoic volcanic rocks of the Carpathian Arc, Hungary. In: Horváth F, Royden LH (eds) The Pannonian Basin. AAPG Memoir vol 45, pp 279–92

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stosch HG, Lugmair GW (1986) Trace element and Sr and Nd isotope geochemistry of peridotite xenoliths from the Eifel (West Germany) and their bearing on the evolution of the subcontinental lithosphere. Earth Planet Sci Lett 80:281–298

    Article  Google Scholar 

  • Stosch HG, Seck HA (1980) Geochemistry and mineralogy of two spinel peridotite suites from Dreiser Weiher, West Germany. Geochim Cosmochim Acta 44:457–470

    Article  Google Scholar 

  • Sun SS, McDonough WE (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ vol 42, pp 313–345

  • Szabó Cs, Vaselli O, Vannucci R, Bottazzi P, Ottolini L, Coradossi N, Kubovics I (1995) Ultramafic xenoliths from the Little Hungarian Plain (Western Hungary): a petrologic and geochemical study. Acta Vulcanol 7:249–263

    Google Scholar 

  • Van der Wal D, Bodinier J-L (1996) Origin of the recrystallisation front in the Ronda peridotite by km-scale pervasive porous melts flow. Contrib Mineral Petrol 122:387–405

    Article  Google Scholar 

  • Varne R (1977) On the origin of spinel lherzolite inclusions in basaltic rocks from Tasmania and elsewhere. J Petrol 18:1–23

    Article  Google Scholar 

  • Wiechert U, Ionov DA, Wedepohl KH (1997) Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contrib Mineral Petrol 126:345–364

    Article  Google Scholar 

  • Wilshire HG, Shervais JW (1975) Al augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the western United States. Phys Chem Earth 9:257–272

    Article  Google Scholar 

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites: Genesis and Evolution. Unwin Hyman, London, pp 1–14

    Google Scholar 

  • Workman RK, Hart SR (2005) Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Xu Y-G, Menzies MA, Bodinier J-L, Bedini RM, Vroon P, Mercier J-CC (1998) Melt percolation and reaction atop a plume: evidence from the poikiloblastic peridotite xenoliths from Borée (Massif Central, France). Contrib Mineral Petrol 132:65–84

    Article  Google Scholar 

  • Xu Y-G, Menzies MA, Thirlwall MF, Huang X-L, Liu Y, Chen X-M (2003a) “Reactive” harzburgites from Huinan, NE China: products of the lithosphere asthenosphere interaction during lithospheric thinning? Geochim Cosmochim Acta 67:487–505

    Article  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (2003b) Enrichment of upper mantle peridotite: petrological, trace element and isotopic evidence in xenoliths from SE China. Chem Geol 198:163–188

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence of carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia. Earth Planet Sci Lett 107:305–317

    Article  Google Scholar 

  • Ying J, Zhang H, Kita N, Morishita Shimoda YG (2006) Nature and evolution of Late Cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Jünan, Shandong Province, China. Earth Planet Sci Lett 244:622–638

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Michael Roden and Professor Jochen Hoefs and an anonymous reviewer for the critical comments on the paper, helping us to improve our manuscript. The OTKA grants T37382 and T35031 supporting this research are gratefully acknowledged by A. E-I and D. G., respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antal Embey-Isztin.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Embey-Isztin, A., Dobosi, G., Bodinier, JL. et al. Origin and significance of poikilitic and mosaic peridotite xenoliths in the western Pannonian Basin: geochemical and petrological evidences. Contrib Mineral Petrol 168, 1054 (2014). https://doi.org/10.1007/s00410-014-1054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1054-y

Keywords

Navigation