Skip to main content
Log in

Zircon trace element chemistry at sub-micrometer resolution for Tarawera volcano, New Zealand, and implications for rhyolite magma evolution

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Zoned crystals can be important recorders of magmatic processes in space and time. However, in most situations, the temporal dimension is difficult to quantify. Here, we have employed secondary ion mass spectrometry depth profiling to excavate parallel pits into non-polished crystal faces of zircon to obtain ~5 μm resolution U–Th disequilibrium ages (one pit) that can be correlated with trace element zoning at sub-μm resolution derived from a second pit. Data from 17 crystals representing each of the four rhyolite eruptions of Tarawera volcano, an intra-caldera edifice within the Okataina Volcanic Centre, reveal diverse zircon growth conditions over time. Most crystals display rimward depletions in Zr/Hf and Ti, broadly consistent with cooling and crystallization. However, a significant fraction of crystals lacks these patterns and displays rimward trace element variations consistent with isothermal or prograde crystallization. Oscillatory zonation patterns in Y, Th, and U are superimposed on the Zr/Hf and Ti trends. Despite the limited number of crystals analyzed in this way, the striking lack of ubiquitous trace element zoning patterns in crystals from the same hand sample implies that fractional crystallization upon cooling was punctuated by magma recharge and crystal mixing affecting different parts of the magma reservoir. By combining data from all crystals, a systematic change to more heterogeneous trace element abundances is revealed by zircon crystal domains <45 ka following the Rotoiti caldera-forming eruption. This contrasts with the more uniform conditions of zircon crystallization lasting >100 ka prior to caldera formation and is best explained by the post-caldera system consisting of small, isolated melt pockets that evolved independently. An important conclusion is that the zircon ‘cargo’ in volcanic rocks reflects thermally and compositionally divergent processes that act near simultaneously in a magma storage region and not exclusively the conditions in the eruptible magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bachmann O, Bergantz GW (2004) On the origin of crystal-poor rhyolites: extracted from batholithic crystal mushes. J Petrol 45(8):1565–1582

    Article  Google Scholar 

  • Bacon CR (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. Geochim Cosmochim Acta 53(5):1055–1066. doi:10.1016/0016-7037(89)90210-X

    Article  Google Scholar 

  • Bacon CR, Hirschmann M (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372(6505):452–454. doi:10.1038/372452a0

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Mineral-melt partitioning of uranium, thorium and their daughters. Rev Mineral Geochem 52(1):59–123. doi:10.2113/0520059

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation re-revisited. Chem Geol 351:324–334. doi:10.1016/j.chemgeo.2013.05.028

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN (2010) Chronology and evolution of caldera-forming and post-caldera magma systems at Okataina Volcano, New Zealand from zircon U–Th model-age spectra. J Petrol 51(5):1121–1141. doi:10.1093/petrology/egq015

    Article  Google Scholar 

  • Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53:113–143

    Article  Google Scholar 

  • Cherniak DJ, Hanchar JM, Watson EB (1997) Diffusion of tetravalent cations in zircon. Contrib Miner Petrol 127(4):383–390. doi:10.1007/s004100050287

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Walker BA, Wooden JL, Mazdab FK, Bea F (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain batholith, Nevada. Mineral Mag 70(5):517–543

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Wooden JL (2010a) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. Contrib Mineral Petrol 160(4):511–531. doi:10.1007/s00410-010-0491-5

    Article  Google Scholar 

  • Claiborne LL, Miller CF, Flanagan DM, Clynne MA, Wooden JL (2010b) Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38(11):1011–1014

    Article  Google Scholar 

  • Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield KL, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U–Th)/He zircon ages. Earth Planet Sci Lett 349–350:240–250. doi:10.1016/j.epsl.2012.06.041

    Article  Google Scholar 

  • Davidson JP, Morgan DJ, Charlier BLA (2007) Isotopic microsampling of magmatic rocks. Elements 3(4):253–259. doi:10.2113/gselements.3.4.253

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Miner Petrol 154(4):429–437. doi:10.1007/s00410-007-0201-0

    Article  Google Scholar 

  • Gelman SE, Gutiérrez FJ, Bachmann O (2013) On the longevity of large upper crustal silicic magma reservoirs. Geology 41:759–762. doi:10.1130/g34241.1

    Article  Google Scholar 

  • Ghiorso MS, Gualda GAR (2012) A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron-titanium oxides. Contrib Miner Petrol. doi:10.1007/s00410-012-0792-y

    Google Scholar 

  • Ginibre C, Woerner G, Kronz A (2007) Crystal zoning as an archive for magma evolution. Elements 3(4):261–266. doi:10.2113/gselements.3.4.261

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14(4–5):4–11. doi:10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2

    Article  Google Scholar 

  • Harrison TM, Schmitt AK (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet Sci Lett 261(1–2):9–19. doi:10.1016/j.epsl.2007.05.016

    Article  Google Scholar 

  • Harrison TM, Watson EB, Aikman AB (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology 35(7):635–638. doi:10.1130/g23505a.1

    Article  Google Scholar 

  • Hofmann A, Valley J, Watson E, Cavosie A, Eiler J (2009) Sub-micron scale distributions of trace elements in zircon. Contrib Miner Petrol 158(3):317–335. doi:10.1007/s00410-009-0385-6

    Article  Google Scholar 

  • Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32(1–2):149–159. doi:10.1016/0024-4937(94)90027-2

    Article  Google Scholar 

  • Jurado-Chichay Z, Walker GPL (2000) Stratigraphy and dispersal of the Mangaone subgroup pyroclastic deposits, Okataina Volcanic Centre, New Zealand. J Volcanol Geoth Res 104(1–4):319–383. doi:10.1016/S0377-0273(00)00210-9

    Article  Google Scholar 

  • Klemetti EW, Deering CD, Cooper KM, Roeske SM (2011) Magmatic perturbations in the Okataina Volcanic Complex, New Zealand at thousand-year timescales recorded in single zircon crystals. Earth Planet Sci Lett 305(1–2):185–194. doi:10.1016/j.epsl.2011.02.054

    Article  Google Scholar 

  • Linnen RL, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66(18):3293–3301. doi:10.1016/S0016-7037(02)00924-9

    Article  Google Scholar 

  • Liu Y, Hu Z, Zong K, Gao C, Gao S, Xu J, Chen H (2010) Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55(15):1535–1546. doi:10.1007/s11434-010-3052-4

    Article  Google Scholar 

  • Lowe DJ, Shane PAR, Alloway BV, Newnham RM (2008) Fingerprints and age models for widespread New Zealand tephra marker beds erupted since 30,000 years ago: a framework for NZ-INTIMATE. Quatern Sci Rev 27(1–2):95–126. doi:10.1016/j.quascirev.2007.01.013

    Article  Google Scholar 

  • Nairn IA (2002) Geology of the Okataina Volcanic Centre: Institute of Geological & Nuclear Sciences Geological Map 25. Lower Hutt, New Zealand, 156 p + 1 sheet

  • Nairn IA, Kohn BP (1973) Relation of the Earthquake Flat Breccia to the Rotoiti Breccia, central North Island, New Zealand. N Z J Geol Geophys 16:269–279. doi:10.1080/00288306.1973.10431457

    Article  Google Scholar 

  • Nairn IA, Shane PR, Cole JW, Leonard GJ, Self S, Pearson N (2004) Rhyolite magma processes of the approximately AD 1315 Kaharoa eruption episode, Tarawera Volcano, New Zealand. J Volcanol Geoth Res 131(3–4):265–294. doi:10.1016/S0377-0273(03)00381-0

    Article  Google Scholar 

  • Reid MR, Coath CD (2000) In situ U–Pb ages of zircons from the Bishop Tuff: no evidence for long crystal residence times. Geology 28(5):443–446

    Article  Google Scholar 

  • Reid MR, Coath CD, Harrison TM, McKeegan KD (1997) Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera: 230Th–238U ion microprobe dating of young zircons. Earth Planet Sci Lett 150(1–2):27–39. doi:10.1016/S0012-821X(97)00077-0

    Article  Google Scholar 

  • Reid MR, Vazquez JA, Schmitt AK (2011) Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer. Contrib Miner Petrol 161(2):293–311. doi:10.1007/s00410-010-0532-0

    Article  Google Scholar 

  • Schmitt AK (2011) Uranium series accessory crystal dating of magmatic processes. Annu Rev Earth Planet Sci 39(1):321–349. doi:10.1146/annurev-earth-040610-133330

    Article  Google Scholar 

  • Schmitt AK, Perfit MR, Rubin KH, Stockli DF, Smith MC, Cotsonika LA, Zellmer GF, Ridley WI, Lovera OM (2011) Rapid cooling rates at an active mid-ocean ridge from zircon thermochronology. Earth Planet Sci Lett 302(3–4):349–358. doi:10.1016/j.epsl.2010.12.022

    Article  Google Scholar 

  • Shane P, Smith VC (2013) Using amphibole crystals to reconstruct magma storage temperatures and pressures for the post-caldera collapse volcanism at Okataina volcano. Lithos 156–159:159–170. doi:10.1016/j.lithos.2012.11.008

    Article  Google Scholar 

  • Shane P, Nairn IA, Smith, VC (2005a) Magma mingling in the ~50 ka Rotoiti eruption from Okataina Volcanic Centre: implications for geochemical diversity and chronology of large volume rhyolites. J Volcanol Geoth Res 139(3–4):295–313. doi:10.1016/j.jvolgeores.2004.08.012

  • Shane P, Smith VC, Nairn IA (2005b) High temperature rhyodacites of the 36 ka Hauparu pyroclastic eruption, Okataina Volcanic Centre, New Zealand: change in a silicic magmatic system following caldera collapse. J Volcanol Geoth Res 147(3–4):357–376. doi:10.1016/j.jvolgeores.2005.04.015

    Article  Google Scholar 

  • Shane P, Martin SB, Smith VC, Beggs KF, Darragh MB, Cole JW, Nairn IA (2007) Multiple rhyolite magmas and basalt injection in the 17.7 ka Rerewhakaaitu eruption episode from Tarawera volcanic complex, New Zealand. J Volcanol Geoth Res 164:1–26. doi:10.1016/j.jvolgeores.2007.04.003

    Article  Google Scholar 

  • Shane P, Nairn IA, Smith VC, Darragh M, Beggs K, Cole JW (2008a) Silicic recharge of multiple rhyolite magmas by basaltic intrusion during the 22.6 ka Okareka eruption episode, New Zealand. Lithos 103(3–4):527–549. doi:10.1016/j.lithos.2007.11.002

    Article  Google Scholar 

  • Shane P, Smith VC, Nairn I (2008b) Millennial timescale resolution of rhyolite magma recharge at Tarawera volcano: insights from quartz chemistry and melt inclusions. Contrib Miner Petrol 156(3):397–411. doi:10.1007/s00410-008-0292-2

    Article  Google Scholar 

  • Shane P, Storm S, Schmitt AK, Lindsay JM (2012) Timing and conditions of formation of granitoid clasts erupted in recent pyroclastic deposits from Tarawera Volcano (New Zealand). Lithos 140–141:1–10. doi:10.1016/j.lithos.2012.01.012

    Article  Google Scholar 

  • Smith VC, Shane P, Nairn IA (2005) Trends in rhyolite geochemistry, mineralogy, and magma storage during the last 50 kyr at Okataina and Taupo volcanic centres, Taupo volcanic zone, New Zealand. J Volcanol Geoth Res 148:372–406. doi:10.1016/j.volgeores.2005.05.005

    Article  Google Scholar 

  • Speed J, Shane P, Nairn I (2002) Volcanic stratigraphy and phase chemistry of the 11 900 yr BP Waiohau eruptive episode, Tarawera volcanic complex, New Zealand. N Z J Geol Geophys 45(3):395–410

    Article  Google Scholar 

  • Stelten ME, Cooper KM (2012) Constraints on the nature of the subvolcanic reservoir at South Sister volcano, Oregon from U-series dating combined with sub-crystal trace-element analysis of plagioclase and zircon. Earth Planet Sci Lett 313:1–11

    Article  Google Scholar 

  • Storm S, Shane P, Schmitt AK, Lindsay JM (2011) Contrasting punctuated zircon growth in two syn-erupted rhyolite magmas from Tarawera volcano: insights to crystal diversity in magmatic systems. Earth Planet Sci Lett 301(3–4):511–520. doi:10.1016/j.epsl.2010.11.034

    Article  Google Scholar 

  • Storm S, Shane P, Schmitt AK, Lindsay JM (2012) Decoupled crystallization and eruption histories of the rhyolite magmatic system at Tarawera volcano revealed by zircon ages and growth rates. Contrib Miner Petrol 163(3):505–519. doi:10.1007/s00410-011-0682-8

    Article  Google Scholar 

  • Tappa MJ, Coleman DS, Mills RD, Samperton KM (2011) The plutonic record of a silicic ignimbrite from the Latir volcanic field, New Mexico. Geochem Geophys Geosyst 12(10). doi:10.1029/2011gc003700

  • Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480(7375):79–82

    Article  Google Scholar 

  • Venezky DY, Rutherford MJ (1999) Petrology and Fe–Ti oxide reequilibration of the 1991 Mount Unzen mixed magma. J Volcanol Geoth Res 89(1–4):213–230. doi:10.1016/S0377-0273(98)00133-4

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Spec Pap Geol Soc Am 315:43–56. doi:10.1130/0-8137-2315-9.43

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64(2):295–304. doi:10.1016/0012-821X(83)90211-X

    Article  Google Scholar 

  • Wilson CJN, Gravley DM, Leonard GS, Rowland JV (2009) Volcanism in the central Taupo volcanic zone, New Zealand: tempo, styles and controls. Spec Publ Int Assoc Volcanol Chem Earth’s Inter 2:225–247

    Google Scholar 

  • Zimmerer MJ, McIntosh WC (2012) The geochronology of volcanic and plutonic rocks at the Questa caldera: constraints on the origin of caldera-related silicic magmas. Geol Soc Am Bull 124:1394–1408. doi:10.1130/b30544.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Oscar Lovera for support in developing probability density plots. Journal reviewers Calvin Miller and Kathryn Watts provided helpful comments. The ion microprobe facility at UCLA is partly supported by a grant from the Instrumentation and Facilities Program, Division of Earth Sciences, National Science Foundation. SSt was supported by a University of Auckland International Doctoral Scholarship, PS by a GNS Science subcontract, and JL by a Fellowship from the New Zealand Earthquake Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel K. Schmitt.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Storm, S., Schmitt, A.K., Shane, P. et al. Zircon trace element chemistry at sub-micrometer resolution for Tarawera volcano, New Zealand, and implications for rhyolite magma evolution. Contrib Mineral Petrol 167, 1000 (2014). https://doi.org/10.1007/s00410-014-1000-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-014-1000-z

Keywords

Navigation