Skip to main content

Advertisement

Log in

Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Hardangervidda-Rogaland Block within southwest Norway is host to ~1.52 to 1.48 Ga continental building and variable reworking during the ~1.1 to 0.9 Ga Sveconorwegian orogeny. Due to the lack of geochronological and geochemical data, the timing and tectonic setting of early Mesoproterozoic magmatism has long been ambiguous. This paper presents zircon U–Pb–Hf–O isotope data combined with whole-rock geochemistry to address the age and petrogenesis of basement units within the Suldal region, located in the centre of the Hardangervidda-Rogaland Block. The basement comprises variably deformed grey gneisses and granitoids that petrologically and geochemically resemble mature volcanic arc lithologies. U–Pb ages confirm that magmatism occurred from ~1,521 to 1,485 Ma, and conspicuously lack any xenocrystic inheritance of distinctly older crust. Hafnium isotope data range from εHf(initial) +1 to +11, suggesting a rather juvenile magmatic source, but with possible involvement of late Palaeoproterozoic crust. Oxygen isotope data range from mantle-like (δ18O ~5 ‰) to elevated (~10 ‰) suggesting involvement of low-temperature altered material (e.g., supracrustal rocks) in the magma source. The Hf–O isotope array is compatible with mixing between mantle-derived material with young low-temperature altered material (oceanic crust/sediments) and older low-temperature altered material (continent-derived sediments). This, combined with a lack of xenoliths and xenocrysts, exposed older crust, AFC trends and S-type geochemistry, all point to mixing within a deep-crustal magma-generation zone. A proposed model comprises accretion of altered oceanic crust and the overlying sediments to a pre-existing continental margin, underthrusting to the magma-generation zone and remobilisation during arc magmatism. The geodynamic setting for this arc magmatism is comparable with that seen in the Phanerozoic (e.g., the Sierra Nevada and Coast Range batholiths), with compositions in the Suldal Sector reaching those of average upper continental crust. As within these younger examples, factors that drive magmatism towards the composition of the average continental crust include the addition of sedimentary material to magma source regions, and delamination of cumulate material. Underthrusting of sedimentary materials and their subsequent involvement in arc magmatism is perhaps a more widespread mechanism involved in continental growth than is currently recognised. Finally, the Suldal Arc magmatism represents a significant juvenile crustal addition to SW Fennoscandia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Åhäll K-I, Connelly JN (2008) Long-term convergence along SW Fennoscandia: 330 m.y. of Proterozoic crustal growth. Precambr Res 161:452–474

    Article  Google Scholar 

  • Åhäll K-I, Cornell DH, Armstrong RA (1998) Ion probe dating of metasedimentary units across the Skagerrak: new constraints for early Mesoproterozoic growth of the Baltic Shield. Precambr Res 87:117–134

    Article  Google Scholar 

  • Andersen T (1997) Radiogenic isotope systematics of the Herefoss granite, South Norway: an indicator of Sveconorwegian (Grenvillian) crustal evolution in the Baltic Shield. Chem Geol 135:139–158

    Article  Google Scholar 

  • Andersen T (2005) Terrane analysis, regional nomenclature and crustal evolution in the Southwest Scandinavian Domain of the Fennoscandian Shield. GFF 127:159–168

    Google Scholar 

  • Andersen T, Griffin WL (2004) Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland Intrusive Complex, SW Norway: implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. Lithos 73:271–288

    Article  Google Scholar 

  • Andersen T, Andresen A, Sylvester AG (2001) Nature and distribution of deep crustal reservoirs in the southwestern part of the Baltic Shield: evidence from Nd, Sr and Pb isotope data on late Sveconorwegian granites. J Geol Soc Lond 158:253–267

    Article  Google Scholar 

  • Andersen T, Andresen A, Sylvester AG (2002a) Timing of late- to post-tectonic Sveconorwegian granitic magmatism in South Norway. NGU Bull 440:5–18

    Google Scholar 

  • Andersen T, Griffin WL, Pearson NJ (2002b) Crustal Evolution in the SW part of the Baltic Shield: the Hf Isotope Evidence. J Petrol 43:1725–1747

    Article  Google Scholar 

  • Andersen T, Griffin WL, Jackson SE, Knudsen T-L, Pearson NJ (2004a) Mid-Proterozoic magmatic arc evolution at the southwest margin of the Baltic Shield. Lithos 73:289–318

    Article  Google Scholar 

  • Andersen T, Laajoki K, Saeed A (2004b) Age, provenance and tectonostratigraphic status of the Mesoproterozoic Blefjell quartzite, Telemark sector, southern Norway. Precambr Res 135:217–244

    Article  Google Scholar 

  • Andersen T, Graham S, Sylvester AG (2007a) Timing and tectonic significance of Sveconorwegian A-type granitic magmatism in Telemark, southern Norway: New results from laser-ablation ICPMS U-Pb dating of zircon. NGU Bull 447:17–31

    Google Scholar 

  • Andersen T, Griffin WL, Sylvester AG (2007b) Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U–Pb and Lu–Hf isotope evidence from granites and gneisses in Telemark, southern Norway. Lithos 93:273–287

    Article  Google Scholar 

  • Andersen T, Andersson UB, Graham S, Åberg G, Simonsen SL (2009a) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol Soc 166:233–247

    Article  Google Scholar 

  • Andersen T, Graham S, Sylvester AG (2009b) The geochemistry, Lu–Hf isotope systematics, and petrogenesis of Late Mesoproterozoic A-type granites in southwestern Fennoscandia. Can Mineral 47:1399–1422

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Appleby SK, Graham CM, Gillespie MR, Hinton RW, Oliver GJH EIMF (2008) A cryptic record of magma mixing in diorites revealed by high-precision SIMS oxygen isotope analysis of zircons. Earth Planet Sci Lett 269:105–117

    Article  Google Scholar 

  • Appleby SK, Gillespie MR, Graham CM, Hinton RW, Oliver GJH, Kelly NM (2010) Do S-type granites commonly sample infracrustal sources? New results from an integrated O, U–Pb and Hf isotope study of zircon. Contrib Mineral Petrol, 160:115–132

    Google Scholar 

  • Armstrong RL (1971) Isotopic and chemical constraints on models of magma genesis in volcanic arcs. Earth Planet Sci Lett 12:137–142

    Article  Google Scholar 

  • Auer S, Bindeman I, Wallace P, Ponomareva V, Portnyagin M (2009) The origin of hydrous, high-δ18O voluminous volcanism: diverse oxygen isotope values and high magmatic water contents within the volcanic record of Klyuchevskoy volcano, Kamchatka, Russia. Contrib Mineral Petrol 157:209–230

    Article  Google Scholar 

  • Be’eri-Shlevin Y, Katzir Y, Valley JW (2009) Crustal evolution and recycling in a juvenile continent: oxygen isotope ratio of zircon in the northern Arabian Nubian Shield. Lithos 107:169–184

    Article  Google Scholar 

  • Bickford ME, Mueller PA, Kamenov GD, Hill BM (2008) Crustal evolution of southern Laurentia during the Paleoproterozoic: insights from zircon Hf isotopic studies of ca. 1.75 Ga rocks in central Colorado. Geology 36:555–558

    Article  Google Scholar 

  • Bindeman IN, Ponomareva VV, Bailey JC, Valley JW (2004) Volcanic arc of Kamchatka: a province with high-δ18O magma sources and large-scale 18O/16O depletion of the upper crust. Geochim Cosmochim Acta 68:841–865

    Article  Google Scholar 

  • Bingen B, Van Breemen O (1998) Tectonic regimes and terrane boundaries in the high-grade Sveconorwegian belt of SW Norway, inferred from U–Pb zircon geochronology and geochemical signature of augen gneiss suites. J Geol Soc Lond 155:143–154

    Article  Google Scholar 

  • Bingen B, Birkeland A, Nordgulen Ø, Sigmond EMO (2001) Correlation of supracrustal sequences and origin of terranes in the Sveconorwegian orogen of SW Scandinavia: SIMS data on zircon in clastic metasediments. Precambr Res 108:293–318

    Article  Google Scholar 

  • Bingen B, Mansfeld J, Sigmond EMO, Stein HJ (2002) Baltica-Laurentia link during the Mesoproterzoic: 1.27 Ga development of continental basins in the Sveconorwegian Orogen, southern Norway. Can J Earth Sci 39:1425–1440

    Article  Google Scholar 

  • Bingen B, Nordgulen Ø, Sigmond EMO, Tucker R, Mansfeld J, Högdahl K (2003) Relations between 1.19-1.13 Ga continental magmatism, sedimentation and metamorphism, Sveconorwegian province, S Norway. Precambr Res 124:215–241

    Article  Google Scholar 

  • Bingen B, Skår Ø, Marker M, Sigmond EMO, Nordgulen Ø, Ragnhildstveit J, Mansfeld J, Tucker RD, Liégeois J-P (2005) Timing of continental building in the Sveconorwegian orogen, SW Scandinavia. Nor Geol Tidsskr 85:87–105

    Google Scholar 

  • Bingen B, Andersson J, Söderlund U, Möller C (2008a) The Mesoproterozoic in the Nordic countries. Episodes 31:29–34

    Google Scholar 

  • Bingen B, Davis WJ, Hamilton MA, Engvik AK, Stein HJ, Skår Ø, Nordgulen Ø (2008b) Geochronology of high-grade metamorphism in the Sveconorwegian belt, S. Norway: U–Pb, Th–Pb and Re–Os data. Nor Geol Tidsskr 88:13–42

    Google Scholar 

  • Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2006) Sources and evolution of arc magmas inferred from coupled O and Hf isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett 268:312–324

    Article  Google Scholar 

  • Brewer TS, Daly JS, Åhäll K-I (1998) Contrasting magmatic arcs in the Palaeoproterozoic of the south-western Baltic Shield. Precambr Res 92:297–315

    Article  Google Scholar 

  • Brewer TS, Åhäll K-I, Menuge JF, Storey CD, Parrish RR (2004) Mesoproterozoic bimodal volcanism in SW Norway, evidence for recurring pr-Sveconorwegian continental margin tectonism. Precambr Res 134:249–273

    Article  Google Scholar 

  • Brophy JG (2008) A study of rare earth element (REE)-SiO2 variations in felsic liquids generated by basalt fractionation and amphibolite melting: a potential test for discriminating between the two different processes. Contrib Mineral Petrol 156:337–357

    Article  Google Scholar 

  • Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geological Society of London, Special Publication 318, pp 1–36

  • Chappell BW, White AJR (1974) Two contrasting granite types. Pac Geol 8:173–174

    Google Scholar 

  • Chauvel C, Marini J-C, Plank T, Ludden JN (2009) Hf–Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochem Geophys Geosyst 10:Q01001. doi:10.1029/2008GC002101

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Dahlgren S, Heaman L, Krogh T (1990) Geological evolution and U–Pb geochronology of the Proterozoic central Telemark area, Norway. Geonytt 17:38–39

    Google Scholar 

  • Davidson J (1985) Mechanisms of contamination in Lesser Antilles island arc magmas from radiogenic and oxygen isotope relationships. Earth Planet Sci Lett 72:163–174

    Article  Google Scholar 

  • de Haas GJLM, Andersen T, Vestin J (1999) Detrital zircon geochronology: new evidence for an old model for accretion of the SW Baltic Shield. J Geol 107:569–586

    Article  Google Scholar 

  • DeCelles PG, Ducea MH, Kapp P, Zandt G (2009) Cyclicity in Cordilleran orogenic systems. Nat Geosci 2:251–257

    Article  Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper E (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6:Q07007. doi:10.1029/2004GC000804

    Article  Google Scholar 

  • Ernst WG (2009) Archean platetectonics, rise of Proterozoic supercontinentality and onset of regional, episodic stagnant-lid behavior. Gondwana Res 15:243–253

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Gaál G, Gorbatschev R (1987) An outline of the Precambrian evolution of the Baltic Shield. Precambr Res 35:15–52

    Article  Google Scholar 

  • Gasparon M, Hilton DR, Varne R (1994) Crustal contamination processes traced by helium isotopes: examples from the Sunda arc, Indonesia. Earth Planet Sci Lett 126:15–22

    Article  Google Scholar 

  • Gill JB (1981) Orogenic andesites and plate tectonics. Springer, New York, pp 1–390

    Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Hacker BR, Kelemen PB, Behn MD (2011) Differentiation of the continental crust by relamination. Earth Planet Sci Lett 307:501–516

    Article  Google Scholar 

  • Hamilton WB (2010) Plate tecotonics began in Neoproterozoic time, and plumes from deep mantle have never operated. Lithos 123:1–20

    Article  Google Scholar 

  • Hawkesworth CJ, O’Nions RK, Arculus RJ (1979) Nd and Sr isotope geochemistry of island arc volcanics, Grenada, Lesser Antilles. Earth Planet Sci Lett 45:237–248

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of Central Chile. Contrib Miner Petrol 98:455–489

    Article  Google Scholar 

  • Högdahl K, Andersson UB, Eklund O (2004) The transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Spec Paper Geol Surv Finl 37:1–125

    Google Scholar 

  • James DE (1981) The combined use of oxygen and radiogenic isotopes as indicators of crustal contamination. Annu Rev Earth Planet Sci 15:395–396

    Google Scholar 

  • Johnson ER, Wallace PJ, Granados HD, Manea VC, Kent AJK, Bindeman IN, Donegan CS (2009) Subduction-related volatile recycling and magma generation beneath central Mexico: insights from melt inclusions, oxygen isotopes and geodynamic models. J Petrol 50:1729–1764

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Collins WJ, Gray CM, Blevin PL (2009) Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet Sci Lett 284:455–466

    Article  Google Scholar 

  • Korja A, Lahtinen R, Nironen M (2006) The Svecofennian orogen: a collage of microcontinents and island arcs. In: Gee DG, Stephenson RA (eds) European Lithosphere Dynamics. Geological Society of London Memoirs 32, pp 561–578

  • Laajoki K, Corfu F, Andersen T (2002) Lithostratigraphy and U–Pb geochronology of the Telemark supracrustals in the Bandal-Sauland area, Telemark, South Norway. Norw J Geol 82:119–138

    Google Scholar 

  • Lackey JS, Valley JW, Saleeby JB (2005) Supracrustal input to magmas in the deep crust of Sierra Nevada batholith: evidence from high-δ18O zircon. Earth Planet Sci Lett 235:315–330

    Article  Google Scholar 

  • Lahtinen R, Korja A, Nironen M, Heikkinen P (2009) Palaeoproterozoic accretionary processes in Fennoscandia. In: Cawood PA, Kröner A (eds) Earth accretionary systems in space and time. Geological Society of London, Special Publication 318, pp 237–256

  • Lamminen J, Köykkä J (2010) The provenance and evolution of the Rjukan Rift Basin, Telemark, south Norway: the shift from a rift basin to an epicontinental sea along a Mesoproterozoic supercontinent. Precambr Res 181:129–149

    Article  Google Scholar 

  • Lee C-TA, Cheng X, Horodyskyj U (2006) The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: insights form the Sierra Nevada, California. Contrib Miner Petrol 151:222–242

    Article  Google Scholar 

  • Lee C-TA, Mortin DM, Kistler RW, Baird AK (2007) Petrology and tectonics of Phanerozoic continent formation: from island arcs to accretion and continental arc magmatism. Earth Planet Sci Lett 263:370–387

    Article  Google Scholar 

  • Martin E, Bindeman I, Grove TL (2011) The origin of high-Mg magmas in Mt Shasta and Medicine Lake volcanoes, Cascade Arc (California): higher and lower than mantle oxygen isotope signatures attributed to current and past subduction. Contrib Mineral Petrol 162:945–960

    Article  Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites: implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Nebel O, Vroon PJ, van Westrenen W, Iizuka T, Davies GR (2011) The effect of sediment recycling in subduction zones on the Hf isotope character of new arc crust, Banda arc, Indonesia. Earth Planet Sci Lett 303:240–250

    Article  Google Scholar 

  • Pearce JA (1983) Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawesworth CJ, Norry MJ (eds) Continental basalts and mantle xenoliths. Shiva Publishing Limited, Cheshire, pp 230–249

    Google Scholar 

  • Peck WH, Valley JW, Corriveau L, Davidson A, McLelland J, Farber DA (2004) Oxygen-isotope constraints on terrane boundaries and origin of 1.18-1.13 Ga granitoids in the southern Grenville Province. In: Tollo RP, Corriveau L, McLelland J, Bartholomew MJl (eds) Proterozoic Tectonic Evolution of the Grenville Orogen in North America. Geological Society of America Memoir 197, pp 163–182

  • Pedersen S, Andersen T, Konnerup-Madsen J, Griffin WL (2009) Recurrent Mesoproterozoic continental magmatism in South-Central Norway. Int J Earth Sci 98:1151–1171

    Article  Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace elements from sediment input to volcanic output at subduction zones. Nature 362:739–743

    Article  Google Scholar 

  • Portnyagin M, Hoernle K, Plechov P, Mironov N, Khubunaya S (2007) Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H2O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc. Earth Planet Sci Lett 255:53–69

    Article  Google Scholar 

  • Roberts NMW, Parrish RR, Horstwood MSA, Brewer T (2011) The 1.23 Ga Fjellhovdane rhyolite, Grøssæ-Totak; a new age within the Telemark supracrustals, southern Norway. Norw J Geol 91:239–246

    Google Scholar 

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Article  Google Scholar 

  • Saito S, Arima M, Nakajima T, Tani K, Miyazaki T, Senda R, Chang Q, Takahashi T, Hirahara Y, Kimura J-I (2012) Petrogenesis of the Kaikomagatake granitoids pluton in the Izu Collision Zone, central Japan: implications for transformation of juvenile oceanic arc into mature continental crust. Contrib Mineral Petrol 163:611–629

    Article  Google Scholar 

  • Salters VJM, Stracke A (2004) Composition of the depleted mantle. Geochemi Geophys Geosyst 5:Q05B07. doi:10.1029/2003GC000597

    Article  Google Scholar 

  • Schärer U, Wilmart E, Duchesne J-C (1996) The short duration and anorogenic character of anorthosite magmatism: U–Pb dating of the Rogaland complex, Norway. Earth Planet Sci Lett 139:335–350

    Article  Google Scholar 

  • Shirey SB, Richardson SH (2011) Start of the Wilson Cycle at 3 Ga Shown by diamonds from subcontinental mantle. Science 333:434–436

    Article  Google Scholar 

  • Sigmond EMO (1975) Geologisk kart over Norge, berggrunnskart Sauda, 1:250000. Geological Survey of Norway, Trondheim

    Google Scholar 

  • Sigmond EMO (1978) Beskrivelse til det berggrunnsgeologiske kartbladet Sauda 1:250000. NGU Bull 341:1–94

    Google Scholar 

  • Simon L, Lécuyer C (2005) Continental recycling: the oxygen isotope point of view. Geochem Geophys Geosyst 6:Q08004. doi:10.1029/2005GC000958

    Article  Google Scholar 

  • Slagstad T, Culshaw NG, Daly JS, Jamieson RA (2009) Western Grenville Province holds key to midcontinental Granite-Rhyolite Province enigma. Terra Nova 21:181–187

    Article  Google Scholar 

  • Slagstad T, Roberts NMW, Marker M, Røhr T, Schiellerup H (2012) A non-collisional, accretionary Sveconorwegian orogen. Terra Nova. doi:10.1111/ter.12001

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society of London, Special Publication 42, pp 313–345

  • Thirlwall MF, Graham AM (1984) Evolution of high-Ca, high-Sr C-series basalts from Grenada, Lesser Antilles: the effects of intra-crustal contamination. J Geol Soc 141:427–445

    Article  Google Scholar 

  • Tollstrup D, Gill J, Kent A, Prinkey D, Williams R, Tamura Y, Ishizuka O (2010) Across-arc geochemical trends in the Izu-Bonin arc: Contributions from the subducting slab, revisited. Geochem Geophys Geosyst 11:Q01X10. doi:10.1029/2009GC002847

    Article  Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Article  Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotope ratios of magmatic zircon. Contrib Mineral Petrol 150:561–580

    Article  Google Scholar 

  • Vander Auwera J, Bolle O, Bingen B, Liégeois J-P, Bogaerts M, Duchesne JC, De Waele B, Longhi J (2011) Sveconorwegian massif-type anorthosites and related granitoids result from post-collisional melting of a continental arc root. Earth Sci Rev 107:375–397

    Article  Google Scholar 

  • Vroon PZ, Lowry D, Van Bergen MJ, Boyce AJ, Mattey DP (2001) Oxygen isotope systematics of the Banda Arc: Low δ18O despite involvement of subducted continental material in magma genesis. Geochim Cosmochim Acta 65:589–609

    Article  Google Scholar 

  • Watson EB (1996) Dissolution, growth and survival of zircons during crustal fusion: kinetic principles, geological models and implications for isotopic inheritance. Trans R Soc Edinb Earth Sci 87:43–56

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wetmore PH, Ducea MN (2011) Geochemical evidence of a near-surface history for source rocks of the central Coast Mountains Batholith, British Columbia. Int Geol Rev 53:230–260

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by a NERC studentship (NER/S/A/2006/14155) to NMWR, and grants NIGFSC IP/994/1107 and NERC IMF 354/1008 to RRP. The authors thank Tom Andersen and Ilya Bindeman for constructive comments that improved the manuscript. The Nordsim facility is operated under an agreement between the research funding agencies of Denmark, Norway and Sweden, the Geological Survey of Finland and the Swedish Museum of Natural History. This is NORDSIM contribution number 331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick M. W. Roberts.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, N.M.W., Slagstad, T., Parrish, R.R. et al. Sedimentary recycling in arc magmas: geochemical and U–Pb–Hf–O constraints on the Mesoproterozoic Suldal Arc, SW Norway. Contrib Mineral Petrol 165, 507–523 (2013). https://doi.org/10.1007/s00410-012-0820-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0820-y

Keywords

Navigation