Skip to main content
Log in

Eclogite-facies fluid infiltration: constraints from δ18O zoning in garnet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In situ analysis reveals that eclogite-facies garnets are zoned in δ18O with lower values in the core and rims that are ~1.5 to 2.5 ‰ higher. This pattern is present in 9 out of 12 garnets analyzed by SIMS from four orogenic eclogite terranes, and correlates with an increase in the mole fraction of pyrope and Mg/Fe ratio from core to rim, indicating prograde garnet growth. At the maximum temperatures and the time-scales experienced by these garnets, calculated intragranular diffusion distances for oxygen are small (<5 μm), indicating that δ18O records primary growth zoning and not diffusive exchange. The oxygen isotope gradients are larger than could form due to temperature changes during closed-system mineral growth. Thus, gradients reflect the compositions of fluids infiltrating during prograde metamorphism. Values of δ18O in garnet cores range from −1 to 15 ‰, likely preserving the composition of the eclogite protoliths. Two garnet cores from the Almenningen eclogite in the Western Gneiss Region, Norway, have δ18O ~−1 ‰ and are the first negative δ18O eclogites identified in the region. In contrast with orogenic eclogites, seven high δ18O garnets (>5 ‰) from two kimberlites are homogeneous in δ18O, possibly due to diffusive exchange, which is possible for prolonged periods at higher mantle temperatures. Homogeneity of δ18O in garnets outside the normal mantle range (5–6 ‰) may be common in kimberlitic samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrinier P, Javoy M, Smith DC, Pineau F (1985) Carbon and oxygen isotopes in eclogites, amphibolites, veins and marbles from Western Gneiss Region, Norway. Chem Geol 52:145–162

    Google Scholar 

  • Baker J, Matthews A, Mattey D, Rowley D, Xue F (1997) Fluid-rock interactions during ultra-high pressure metamorphism, Dabie Shan, China. Geochim Cosmochim Acta 61:1685–1696

    Article  Google Scholar 

  • Baumgartner LP, Valley JW (2001) Stable isotope transport and contact metamorphic fluid flow. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews of mineralogy and geochemistry, vol 43. Mineralogical Society of America, Washington DC, pp 415–467

    Google Scholar 

  • Brown EH, Forbes RB (1986) Phase petrology of eclogitic rocks in the Fairbanks district, Alaska. In: Evans BW, Brown EH (eds) Blueschists and eclogites, Geological Society of America Memoir 164, Washington, DC, pp 155–167

  • Cavosie AJ, Kita NT, Valley JW (2009) Primitive oxygen-isotope ratio recorded in magmatic zircon from the Mid-Atlantic Ridge. Am Mineral 94(7):926–934

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews of mineralogy and geochemistry, vol 43. Mineralogical Society of America, Washington DC

    Google Scholar 

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RP (1975) Limits on the effect of pressure in isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Article  Google Scholar 

  • Coghlan RAN (1990) Studies in diffusional transport: grain boundary transport of oxygen in feldspars, diffusion of oxygen, REE’s in garnet. PhD thesis, Brown University

  • Cole DR, Chakraborty S (2001) Rates and mechanisms of isotopic exchange. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews of mineralogy and geochemistry, vol 43. Mineralogical Society of America, Washington DC, pp 319–364

    Google Scholar 

  • Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  • Criss RE, Taylor HP (1986) Meteoric-hydrothermal systems. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes, reviews of mineralogy and geochemistry, vol 16. Mineralogical Society of America, Washington DC, pp 373–424

    Google Scholar 

  • Cuthbert SJ, Carswell DA, Krogh-Ravna EJ, Wain A (2000) Eclogites and eclogites in the Western Gneiss Region, Norwegian Caledonides. Lithos 52:165–195

    Article  Google Scholar 

  • Douglas TA, Layer PW, Newberry RJ, Keskinen MJ (2002) Geochronological and thermobarometric constraints on the metamorphic history of the Fairbanks Mining District, western Yukon-Tanana terrane, Alaska. Can J Earth Sci 39:1107–1126

    Article  Google Scholar 

  • Edwards KJ, Valley JW (1998) Oxygen isotope diffusion and zoning in diopside: the importance of water fugacity during cooling. Geochim Cosmochim Acta 62:2265–2277

    Article  Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews of mineralogy and geochemistry, vol 43. Mineralogical Society of America, Washington DC, pp 319–364

    Google Scholar 

  • Eiler JM, Valley JW, Baumgartner LP (1993) A new look at stable isotope thermometry. Geochim Cosmochim Acta 57:2571–2583

    Article  Google Scholar 

  • Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653

    Article  Google Scholar 

  • Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–2372

    Article  Google Scholar 

  • Faryad SW, Chakraborty S (2005) Duration of Eo-Alpine metamorphic events obtained from multicomponent diffusion modeling of garnet: a case study from the Eastern Alps. Contrib Miner Petrol 150:306–318

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Griffin WL, O’Reilly SY (2007) Cratonic lithospheric mantle: is anything subducted? Episodes 30(1):43–53

    Google Scholar 

  • Grimes CB, Ushikubo T, John BE, Valley JW (2011) Uniformly mantle-like δ18O in zircons from oceanic plagiogranites and gabbros. Contrib Miner Petrol 161:13–33

    Article  Google Scholar 

  • Hacker B (2007) Ascent of the ultrahigh-pressure Western Gneiss Region, Norway. In: Cloos M, Carlson WD, Gilbert MC, Liou JG, Sorensen SS (eds) Convergent margin terranes and associated regions: a tribute to W.G. Ernst, Geological Society of America Special Paper 419, pp 171–184

  • Hacker BR, Andersen TB, Johnston S, Kylander-Clark ARC, Peterman EM, Walsh EO, Young D (2010) High-temperature deformation during continental-margin subduction and exhumation: the ultrahigh-pressure Western Gneiss Region of Norway. Tectonophysics 480:149–171

    Article  Google Scholar 

  • Harmon RS, Hoefs J (1995) Oxygen isotope heterogeneity of the mantle deduced from global 18O systematic of basalts from different geotectonic settings. Contrib Miner Petrol 120:95–114

    Article  Google Scholar 

  • Jacob DE (2004) Nature and origin of eclogite xenoliths from kimberlites. Lithos 77:295–314

    Article  Google Scholar 

  • Jacob DE, Schmickler B, Schulze DJ (2003) Trace element geochemistry of coesite-bearing eclogites from the Roberts Victor kimberlite, Kaapvaal craton. Lithos 71:337–351

    Article  Google Scholar 

  • Kaminsky FV, Zakharchenko OD, Griffin WL, Channer DMD, Khachatrayan-Blinova GK (2000) Diamond from the Guaniamo area, Venezuela. Can Mineral 38:1347–1370

    Article  Google Scholar 

  • Kaminsky FV, Sablukov SM, Sablukova LI, Channer DMD (2004) Neoproterozoic ‘anomalous’ kimberlites of Guaniamo, Venezuela: mica kimberlites of ‘isotopic transitional’ type. Lithos 79:565–590

    Article  Google Scholar 

  • Kelly JL, Fu B, Kita NT, Valley JW (2007) Optically continuous silcrete quartz cements of the St. Peter Sandstone: high precision oxygen isotope analysis by ion microprobe. Geochim Cosmochim Acta 71:3812–3832

    Article  Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals; 4, application to chain and sheet silicates and orthosilicates. Rev Geophys Space Phys 18:862–886

    Article  Google Scholar 

  • Kita NT, Ushikubo T, Fu B, Valley JW (2009) High precision SIMS oxygen isotope analyses and the effect of sample topography. Chem Geol 264:43–57

    Article  Google Scholar 

  • Klápová H (1990) Eclogites of the Bohemian part of the Saxothuringicum. Rozpravy Československé Akademie Věd Řada Matematických a Přírodních 100: Sešit 5

  • Klápová H, Konopásek J, Schulmann K (1998) Eclogites from the Czech part of the Erzgebirge: multi-stage metamorphic and structural evolution. J Geol Soc Lond 155:567–583

    Article  Google Scholar 

  • Kohn MJ, Valley JW (1994) Oxygen isotope constraints on metamorphic fluid flow, Townshend Dam, Vermont, USA. Geochim Cosmochim Acta 58:5551–5566

    Article  Google Scholar 

  • Kohn MJ, Valley JW, Elsenheimer D, Spicuzza MJ (1993) Isotope zoning in garnet and staurolite: evidence for closed-system mineral growth during regional metamorphism. Am Mineral 78:988–1001

    Google Scholar 

  • Krogh EJ, Carswell DA (1995) HP and UHP eclogites and garnet peridotites in the Scandinavian Caledonides. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism, Cambridge University Press, Cambridge, pp 244–298

  • Liati A, Gebauer D, Fanning CM (2009) Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. J Geol Soc Lond 166:797–810

    Google Scholar 

  • Masago H, Rumble D, Ernst WG, Parkinson CD, Maruyama S (2003) Low δ18O eclogites from the Kokchetav massif, northern Kazakhstan. J Metam Petrol 21:579–587

    Article  Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionations involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644

    Article  Google Scholar 

  • Medaris LG, Jelínek E, Mísař Z (1995) Czech eclogites: terrane settings and implications for Variscan tectonic evolution of the Bohemian Massif. Eur J Mineral 7:7–28

    Google Scholar 

  • Medaris LG Jr, Beard BL, Jelínek E (2006a) Mantle-derived, UHP garnet pyroxenite and eclogite in the Moldanubian Gföhl Nappe, Bohemian Massif; a geochemical review, new P-T determinations, and tectonic interpretation. Int Geol Rev 48:765–777

    Article  Google Scholar 

  • Medaris LG, Ghent ED, Wang HF, Fournelle JH, Jelínek E (2006b) The Spačice eclogite: constraints on the P-T-t history of the Gföhl granulite terrane, Moldanubian Zone, Bohemian Massif. Mineral Petrol 86:203–220

    Article  Google Scholar 

  • Muehlenbachs K (1986) Alteration of the oceanic crust and the 18O history of seawater. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes, reviews in mineralogy, vol 16. Mineralogical Society of America, Washington DC, pp 425–444

    Google Scholar 

  • Nixon PH, Davies GR, Rex DC, Gray A (1992) Venezuela kimberlites. J Volcanol Geoth Res 50:101–115

    Article  Google Scholar 

  • Page FZ, Kita NT, Valley JW (2010) Ion microprobe analysis of oxygen isotopes in garnets of complex chemistry. Chem Geol 270:9–19

    Article  Google Scholar 

  • Pollington A, Baxter EF (2010) High resolution Sm-Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth Planet Sci Lett 293:63–71

    Article  Google Scholar 

  • Putlitz B, Matthews A, Valley JW (2000) Oxygen and hydrogen isotope study of high-pressure metagabbros and metabasalts (Cyclades, Greece): implications for the subduction of oceanic crust. Contrib Miner Petrol 138:114–126

    Article  Google Scholar 

  • Russell AK (2012) Oxygen isotopes in garnet from eclogite: oxygen isotope geochemistry of the Bohemian Massif and zoning revealed by secondary ion mass spectrometry. MS thesis, University of Wisconsin-Madison

  • Santini L (1992) Geochemistry and geochronology of the basic rocks of the Penninic Nappes of East-Central Alps (Switzerland). PhD thesis, University of Lausanne

  • Schulze DJ, Valley JW, Spicuzza MJ (2000) Coesite eclogites from the Roberts Victor kimberlite, South Africa. Lithos 54:23–32

    Article  Google Scholar 

  • Schulze DJ, Harte B, Valley JW, Brenan JM, Channer DMD (2003a) Extreme crustal oxygen isotope signatures preserved in coesite in diamond. Nature 423(6875):68–70

    Article  Google Scholar 

  • Schulze DJ, Valley JW, Spicuzza MJ, Channer DMD (2003b) Oxygen isotope composition of eclogitic and peridotitic garnet megacrysts from the La Ceniza kimberlite, Guaniamo, Venezuela. Int Geol Rev 45:968–975

    Article  Google Scholar 

  • Strickland A, Russell AK, Quintero R, Spicuzza MJ, Valley JW (2011) Oxygen isotope ratios of quartz inclusions in garnet and implications for mineral pair thermometry. Geological Society of America Abstracts with Programs 43: 93

    Google Scholar 

  • Taylor HP, Forester RW (1979) An oxygen and hydrogen isotope study of the Skaergaard Intrusion and its country rocks: a description of a 55-m.y. old fossil hydrothermal system. J Petrol 20:355–419

    Article  Google Scholar 

  • Valley JW (1986) Stable isotope geochemistry of metamorphic rocks. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high temperature geological processes, reviews in mineralogy and geochemistry, vol 16. Mineralogical Society of America, Washington DC, pp 445–489

    Google Scholar 

  • Valley JW (2001) Stable isotope thermometry at high temperatures. In: Valley JW, Cole DR (eds) Stable isotope geochemistry, reviews in mineralogy and geochemistry, vol 43. Mineralogical Society of America, Washington DC, pp 365–413

    Google Scholar 

  • Valley JW (2003) Oxygen isotopes in zircon. In: Hanchar JM, Hoskin PWO (eds) Zircon, reviews of mineralogy and geochemistry, vol 53. Mineralogical Society of America, Washington DC, pp 343–385

    Google Scholar 

  • Valley JW, Kita NT (2009) In situ oxygen isotope geochemistry by ion microprobe. In: Fayek M (ed) MAC Short Course: Secondary Ion Mass Spectrometry in the Earth Sciences 41, Mineralogical Society of Canada, Toronto, pp 19–63

  • Valley JW, Kitchen N, Kohn MJ, Niendorf CR, Spicuzza MJ (1995) UWG-2, a garnet standard for oxygen isotope ratios: strategies for high precision and accuracy with laser heating. Geochim Cosmochim Acta 59:5223–5231

    Article  Google Scholar 

  • Vogel DE, Garlick GD (1970) Oxygen-isotope ratios in metamorphic eclogites. Contrib Miner Petrol 28:183–191

    Article  Google Scholar 

  • Wiesli RA (2002) Geochemistry of eclogites and metapelites from the Adula Nappe, Central Alps, Switzerland. PhD thesis, University of Tennessee

  • Wiesli RA, Taylor LA, Valley JW, Tromsdorff V, Kurosawa M (2001) Geochemistry of eclogites and metapelites from Trescolmen, Central Alps, as observed from major and trace elements and oxygen isotopes. Int Geol Rev 43:95–119

    Article  Google Scholar 

  • Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modeling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany). J Geodyn 33:281–314

    Article  Google Scholar 

  • Yui TF, Rumble D, Lo CH (1995) Unusually low δ18O ultra-high pressure metamorphic rocks from the Sulu terrain, eastern China. Geochim Cosmochim Acta 59:2859–2864

    Article  Google Scholar 

  • Zhang R-Y, Rumble D, Liou J-G, Wang Q-C (1998) Low δ18O, ultrahigh-P garnet-bearing mafic and ultramafic rocks from Dabie Shan, China. Chem Geol 150:161–170

    Article  Google Scholar 

  • Zheng Y-F, Zhao Z-F, Wu Y-B, Zhang S-B, Liu X, Wu F-Y (2006) Zircon age, Hf and O isotope constrains on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen. Chem Geol 231:135–158

    Article  Google Scholar 

Download references

Acknowledgments

John Fournelle assisted with electron microprobe analyses. Reinhard Kozdon assisted with the development of the SIMS jadeite standard, which was donated by George Harlow, AMNH. Rene Wiesli donated samples from Trescolmen. Toco Mining Corp and De Beers are thanked for xenolith samples. The authors thank Brian Hess for sample preparation, and Noriko Kita and the WiscSIMS group for discussions and assistance in SIMS analysis. Two anonymous reviewers assisted in the clarity and quality of this manuscript. This research was supported through grants from the Geological Society of America, Sigma Xi, National Science Foundation (EAR-0838058), and DOE (93ER14389). WiscSIMS is partially supported by National Science Foundation grants EAR-0319230, EAR-0744079, and EAR-1053466.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashley K. Russell.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1979 kb)

Supplementary material 2 (XLS 1666 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, A.K., Kitajima, K., Strickland, A. et al. Eclogite-facies fluid infiltration: constraints from δ18O zoning in garnet. Contrib Mineral Petrol 165, 103–116 (2013). https://doi.org/10.1007/s00410-012-0794-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0794-9

Keywords

Navigation