Skip to main content

Advertisement

Log in

Mantle and crustal sources of Archean anorthosite: a combined in situ isotopic study of Pb–Pb in plagioclase and Lu–Hf in zircon

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amelin Y, Lee D-C, Halliday AN, Pidgeon RT (1999) Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons. Nature 399:252–255

    Article  Google Scholar 

  • Amelin Y, Lee D-C, Halliday AN (2000) Early-middle Archean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64:4205–4225

    Article  Google Scholar 

  • Andersen T, Andersson UB, Graham S, Aberg G, Simonsen SL (2009) Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. J Geol Soc 166:233–247

    Article  Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth earth. Philos T R Soc Lond A 301:443–472

    Article  Google Scholar 

  • Ashwal LD (1993) Anorthosites. Springer, New York

    Book  Google Scholar 

  • Ashwal LD (2010) The temporality of anorthosites. Can Min 48:711–728

    Google Scholar 

  • Ashwal LD, Wooden JL, Phinney WC, Morrison DA (1985) Sm-Nd and Rb-Sr isotope systematics of an Archean anorthosite and related rocks from the Superior Province of the Canadian shield. Earth Planet Sci Lett 74:338–346

    Article  Google Scholar 

  • Ashwal LD, Jacobsen SB, Myers JS, Kalsbeek F, Goldstein SJ (1989) Sm-Nd age of the Fiskenæsset anorthosite complex, West Greenland. Earth Planet Sci Lett 91:261–270

    Article  Google Scholar 

  • Baadsgaard H, McGregor VR (1981) The U-Th-Pb systematics of zircons from the type Nuk gneisses, Godthabsfjord, West Greenland. Geochim Cosmochim Acta 45:1099–1109

    Article  Google Scholar 

  • Barton JM Jr (1996) The Messina layered intrusion, Limpopo belt, South Africa, an example on the in situ contamination of an Archaean anorthosite complex by continental crust. Precam Res 78:139–150

    Article  Google Scholar 

  • Bennett VC (2003) Compositional evolution of the mantle. In: Carlson RW (ed) The mantle and core, treatise on geochemistry, vol 2. Elsevier, Amsterdam, pp 493–515

    Chapter  Google Scholar 

  • Bennett VC, Nutman AP, McCulloch MT (1993) Nd isotopic evidence for transient, highly depleted mantle reservoirs in the early history of the earth. Earth Planet Sci Lett 119:299–317

    Article  Google Scholar 

  • Bhaskar Rao YJ, Chetty TRK, Janardhan AS, Gopalan K (1996) Sm–Nd and Rb–Sr ages and P-T history of the Archean Sittampundi and Bhavani layered meta-anorthosite complexes in the Cauvery shear zone, South India: evidence for Neoproterozoic reworking of Archean crust. Contrib Mineral Petrol 125:237–250

    Article  Google Scholar 

  • Bhaskar Rao YJ, Kumar A, Vrevsky AB, Srinivasan R, Anantha Iyer GV (2000) Sm–Nd ages of two meta-anorthosite complexes around Holenarsipur: constraints on the antiquity of Archean supracrustal rocks of the Dharwar Craton. Proc Indian Acad Sci Earth Planet Sci 109:57–65

    Google Scholar 

  • Black LP, Moorbath S, Pankhurst RJ, Windley BF (1973) 207Pb/206Pb whole rock age of the Archaean granulite facies metamorphic event in West Greenland. Nat Phys Sci 244:50–53

    Google Scholar 

  • Blichert-Toft J, Albarede F (1994) Short-lived chemical heterogeneities in the Archean mantle with implications for mantle convection. Science 263:1593–1596

    Article  Google Scholar 

  • Blichert-Toft J, Albarede F (2008) Hafnium isotopes in Jack Hills zircons and the formation of the Hadean crust. Earth Planet Sci Lett 265:686–702

    Article  Google Scholar 

  • Blichert-Toft J, Puchtel IS (2010) Depleted mantle sources through time: Evidence from Lu-Hf and Sm-Nd isotope systematics of Archean komatiites. Earth Planet Sci Lett 297:598–606

    Article  Google Scholar 

  • Bouvier A, Vervoort JD, Patchett PJ (2008) The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth Planet Sci Lett 273:48–57

    Article  Google Scholar 

  • Bowring SA, Housh T (1995) The Earth’s early evolution. Science 269:1535–1540

    Article  Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00–4.03 Ga) orthogneisses from northwestern Canada. Contrib Mineral Petrol 134:3–16

    Article  Google Scholar 

  • Bridgwater D, Keto L, McGregor VR, Myers JS (1976) Archaean gneiss complex of Greenland. In: Escher A, Watt WS (eds) Geology of Greenland, Grønlands geol. Unders, Copenhagen, p 18–75

  • Chase CG, Patchett PJ (1988) Stored mafic/ultramafic crust and early Archean mantle depletion. Earth Planet Sci Lett 91:66–72

    Article  Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Connelly JN, Thrane K (2005) Rapid determination of Pb isotopes to define Precambrian allochthonous domains: an example from West Greenland. Geology 33:953–956

    Article  Google Scholar 

  • Connolly JAD, Schmidt MW, Solferino G, Badgassarov N (2009) Permeability of asthenospheric mantle and melt extraction rates at mid-ocean ridges. Nature 462:209–212

    Article  Google Scholar 

  • Davies GF (2006) Gravitational depletion of the early Earth’s upper mantle and the viability of early plate tectonics. Earth Planet Sci Lett 243:376–382

    Article  Google Scholar 

  • Dymek RF, Owens BR (2001) Chemical assembly of Archean anorthosites from amphibolite-and granulite-facies terranes, SW Greenland. Contrib Mineral Petrol 141:513–528

    Article  Google Scholar 

  • Escher JC, Myers JS (1975) New evidence concerning the original relationships of early Precambrian volcanics and anorthosites in the Fiskenæsset region, southern West Greenland. Rapp Gronl Geol Unders 75:72–76

    Google Scholar 

  • Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Min Process 84:310–320

    Article  Google Scholar 

  • Fletcher IR, Rosman KJR, Libby WG (1988) Sm-Nd, Pb–Pb and Rb-Sr geochronology of the Manfred complex, Mount Narryer, western Australia. Precambrian Res 38:343–354

    Article  Google Scholar 

  • Flowerdew MJ, Millar IL, Vaughan APM, Horstwood MSA, Fanning CM (2006) The source of granitic gneisses and migmatites in the Antarctic Peninsula: a combined U-Pb SHRIMP and laser ablation Hf isotope study of complex zircons. Contrib Mineral Petrol 151:751–768

    Article  Google Scholar 

  • Frei R, Polat A, Meibom A (2004) The Hadean upper mantle conundrum: evidence for source depletion and enrichment from Sm-Nd, Re-Os, and Pb isotopic compositions in 3.71 Gy boninite-like metabaslts from the Isua Supracrustal Belt, Greenland. Geochim Cosmochim Acta 68:1645–1660

    Article  Google Scholar 

  • Galer SJG, Goldstein SL (1996) Influence of accretion on lead in the Earth. In: Basu A, Hart S (eds) Earth processes: reading the isotopic code. American Geophysical Union, Washington, DC, pp 75–98

    Chapter  Google Scholar 

  • Gancarz AJ (1976) Isotopic systematics in Archean rocks, West Greenland. Dissertation, California Institute of Technology

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration—New insights from combined U-Pb and Lu-Hf in situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261:230–243

    Article  Google Scholar 

  • Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O’Reilly SY, Shee SR (2000) The Hf isotope composition of cratonic mantle; LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim Cosmochim Acta 64:133–147

    Article  Google Scholar 

  • Grimes CB, John BE, Cheadle MJ, Mazdab FK, Wooden JL, Swapp S, Schwartz JJ (2009) On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contrib Mineral Petrol 158:757–783

    Article  Google Scholar 

  • Hargraves RB (1986) Faster spreading or greater ridge length in the Archean? Geology 14:750–752

    Article  Google Scholar 

  • Harrison TM, Blichert-Toft J, Muller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence for continental crust at 4.4 to 4.5 Ga. Science 310:1947

    Article  Google Scholar 

  • Harrison TM, Schmitt AK, McCulloch MT, Lovera OM (2008) Early (4.5 Ga) formation of terrestrial crust: Lu Hf, δ18O, and Ti thermometry results for Hadean zircons. Earth Planet Sci Lett 268:476–486

    Article  Google Scholar 

  • Hawkesworth CJ, Dhuime B, Pietranik AB, Cawood PA, Kamp AIS, Storey CD (2010) The generation and evolution of the continental crust. J Geol Soc Lond 167:229–248

    Article  Google Scholar 

  • Hoffmann JE, Svahnberg H, Piazolo S, Schersten A, Munker C (2012) The geodynamic evolution of Mesoarchean anorthosite complexes inferred from the Naajat Kuuat complex, southern West Greenland. Precambrian Res 196–197:149–170

    Article  Google Scholar 

  • Iizuka T, Komiya T, Johnson SP, Kon Y, Maruyama S, Hirata T (2009) Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: evidence from in situ Lu-Hf isotope analysis of zircon. Chem Geol 259:230–239

    Article  Google Scholar 

  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906

    Article  Google Scholar 

  • Kalsbeek F, Pidgeon RT (1980) The geological significance of Rb-Sr whole-rock isochrons of polymetamorphic Archean gneisses, Fiskenæsset area, southern West Greenland. Earth Planet Sci Lett 50:225–237

    Article  Google Scholar 

  • Kamber BS (2007) The enigma of the terrestrial protocrust: evidence for its former existence and the importance of its complete disappearance. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in precambrian geology, vol 15, p 75–89

  • Kamber BS, Moorbath S (1998) Initial Pb of the Amitsoq gneiss revisited: implication for the timing of early Archeaean crustal evolution in West Greenland. Chem Geol 150:19–41

    Article  Google Scholar 

  • Kamber BS, Collerson KD, Moorbath S, Whitehouse MJ (2003) Inheritance of early Archaean Pb-isotope variability from long-lived Hadean protocrust. Contrib Mineral Petrol 145:25–46

    Article  Google Scholar 

  • Kamber BS, Whitehouse MJ, Bolhar R, Moorbath S (2005) Volcanic resurfacing and the early terrestrial crust: zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet Sci Lett 240:276–290

    Article  Google Scholar 

  • Kemp AIS, Foster GL, Schersten A, Whitehouse MJ, Darling J, Storey C (2009) Concurrent Pb-Hf isotope analysis of zircon by laser ablation multi-collector ICP-MS, with implications for the crustal evolution of Greenland and the Himalayas. Chem Geol 261:244–260

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: new constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Article  Google Scholar 

  • Keulen N, Næraa T, Kokfelt T, Schumacher JC, Schersten A (2010) Zircon record of the igneous and metamorphic history of the Fiskenæsset anorthosite complex in southern West Greenland. Geol Surv Den Greenl Bull 20:67–70

    Google Scholar 

  • Kinny PD, Williams IS, Froude DO, Ireland TR, Compston W (1988) Early Archean zircon ages from orthogneisses and anorthosites at Mount Narryer, western Australia. Precambrian Res 38:325–341

    Article  Google Scholar 

  • Kramers JD, Tolstikhin IN (1997) Two terrestrial lead isotope paradoxes, forward transport modeling, core formation and the history of the continental crust. Chem Geol 139:75–110

    Article  Google Scholar 

  • Lahaye Y, Arndt N, Byerly G, Chauvel C, Fourcade S, Gruau G (1995) The influence of alteration of the trace-element and Nd isotopic compositions of komatiites. Chem Geol 126:43–64

    Article  Google Scholar 

  • Ludwig K (2008) User’s Manual for Isoplot 3.6, a geochronological toolkit for Microsoft Excel. Special Publication No 4. Berkeley Geochronology Center, p 78

  • Martin H (1993) The mechanisms of petrogenesis of the Archean continental crust—comparison with modern processes. Lithos 30:373–388

    Article  Google Scholar 

  • Mathez EA, Waight TE (2003) Lead isotopic disequilibrium between sulfide and plagioclase in the Bushveld complex and the chemical evolution of large layered intrusions. Geochim Cosmochim Acta 67:1875–1888

    Article  Google Scholar 

  • Mohan MR, Satyanarayanan M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2012) Neoarchean suprasubduction zone arc magmatism in southern India: Geochemistry, zircon U-Pb geochronology and Hf isotopes of the Sittampundi Anorthosite Complex. Gondwana Res doi:10.1016/j.gr.2012.04.004

  • Moorbath S, Pankhurst RJ (1976) Further rubidium-strontium age and isotopic evidence for the nature of late Archean plutonic event in West Greenland. Nature 26:124–126

    Article  Google Scholar 

  • Mouri H, Whitehouse MJ, Brandl G, Rajesh HM (2009) A magmatic age and four successive metamorphic events recorded in zircons from a single meta-anorthosite sample in the Central Zone of the Limpopo Belt, South Africa. J Geol Soc Lond 166:827–830

    Article  Google Scholar 

  • Myers JS (1975) Igneous stratigraphy of Archaean anorthosite at Majorqap qava, near Fiskenæsset, south-West Greenland. Rapp Grønl Geol Unders 74:27

    Google Scholar 

  • Myers JS (1976) Channel deposits of peridotite, gabbro and chromitite from turbidity currents in the stratiform Fiskenæsset anorthosite complex, southwest Greenland. Lithos 9:265–268

    Article  Google Scholar 

  • Myers JS (1985) Stratigraphy and structure of the Fiskenæsset complex, West Greenland. Grønl Geol Unders Bull 150:72

    Google Scholar 

  • Næraa T, Schersten A (2008) New zircon ages from the Tasiusarsuaq terrane, southern West Greenland. Geol Surv Den Greenl Bull 15:73–76

    Google Scholar 

  • Nutman AP, McGregor VR, Friend CRL, Bennett VC, Kinny PD (1996) The Itsaq Gneiss complex of southern West Greenland; the world’s most extensive record of early crustal evolution (3900–3600 Ma). Precambrian Res 78:1–39

    Article  Google Scholar 

  • Nutman AP, McGregor VR, Bennett VC, Friend CRL (2001) Age significance of U-Th-Pb zircon data from early Archaean rocks of West Greenland—a reassessment based on combined ion-microprobe and imaging studies—comment. Chem Geol 175:191–199

    Article  Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean mafic crust. Science 321:1828–1831

    Article  Google Scholar 

  • Oversby VM (1975) Lead isotopic systematics and ages of Archean acid intrusives in the Kalgoorlie Norseman area, western Australia. Geochim Cosmochim Acta 39:1107–1125

    Article  Google Scholar 

  • Owens BE, Dymek RF (1997) Comparative petrology of Archean anorthosites in amphibolite and granulite facies terranes, WE Greenland. Contrib Mineral Petrol 128:371–384

    Article  Google Scholar 

  • Patchett PJ (1983) Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochim Cosmochim Acta 47:81–91

    Article  Google Scholar 

  • Patchett PJ, Kouvo O, Hedge CE, Tatsumoto M (1981) Evolution of continental crust and mantle heterogeneity: evidence from Hf isotopes. Contrib Mineral Petrol 78:279–297

    Article  Google Scholar 

  • Pettingill HS, Patchett PJ (1981) Lu-Hf total-rock age for the Amitsoq gneisses, West Greenland. Earth Planet Sci Lett 55:150–156

    Article  Google Scholar 

  • Phinney WC (1982) Petrogenesis of Archean anorthosites. In: Walker D, McCallum IS (eds) Workshop on magmatic processes of early planetary crusts: magma oceans and stratiform layered intrusions: Lunar Planet Inst Tech Rep 82–01. Lunar Planet Inst, Houston p, pp 121–124

    Google Scholar 

  • Phinney WC, Morrison DA, Maczuga DE (1988) Anorthosites and related megacrystic units in the evolution of Archean crust. J Petrol 29:1283–1323

    Article  Google Scholar 

  • Pidgeon RT, Kalsbeek F (1978) Dating of igneous and metamorphic events in the Fiskenaesset region of southern West Greenland. Can J Earth Sci 15:2021–2025

    Article  Google Scholar 

  • Pietranik AB, Hawkesworth CJ, Storey CD, Kemp AIS, Sircombe KN, Whitehouse MJ, Bleeker W (2008) Episodic mafic crust formation from 4.5 to 2.8 Ga. New evidence from detrital zircons, Slave craton, Canada. Geology 36:875–878

    Article  Google Scholar 

  • Pietranik AB, Hawkesworth CJ, Storey C, Kemp T (2009) Depleted mantle evolution and how it is recorded in zircon. Geochim Cosmochim Acta 73:A1028

    Google Scholar 

  • Polat A, Appel PWU, Fryer B, Windley B, Frei R, Samson IM, Huang H (2009) Trace element systematics of the Neoarchean Fiskenæsset anorthosite complex and associated meta-volcanic rocks, SW Greenland: evidence for a magmatic arc origin. Precambrian Res 175:87–115

    Article  Google Scholar 

  • Polat A, Frei R, Schersten A, Appel PWU (2010) New age (ca. 2970 Ma), mantle source composition and geodynamic constraints on the Archean Fiskenæsset anorthosite complex, SW Greenland. Chem Geol 277:1–20

    Article  Google Scholar 

  • Polat A, Fryer BJ, Appel PWU, Kalvig P, Kerrich R, Dilek Y, Yang Z (2011) Geochmistry of anorthositic differentiated sills in the Archean (~ 2970 Ma) Fiskenæsset complex, SW Greenland: implications for parental magma compositions, geodynamic setting, and secular heat flow in arcs. Lithos 123:50–72

    Article  Google Scholar 

  • Riciputi LR, Valley JW, McGregor VR (1990) Conditions of Archean granulite metamorphism in the Godthab-Fiskenaesset region, southern West Greenland. J Meta Geol 8:171–190

    Article  Google Scholar 

  • Rivalenti G (1976) Geochemistry of metavolcanic amphibolites from south-west Greenland. In: Windley BF (ed) The early history of the earth. Wiley, London, pp 213–223

    Google Scholar 

  • Rollinson H, Reid C, Windley B (2010) Chromitites from the Fiskenæsset anorthositic complex, West Greenland: clues to late Archaean mantle processes. In: Kusky TM, Zhai M-G, Xiao W (eds) The evolving continents: understanding processes of continental growth, vol 338. Geological Society, London, pp 197–212

    Google Scholar 

  • Scoates JS, Chamberlain KR (1995) Baddeleyite (ZrO2) and zircon (ZrSiO4) from anorthositic rocks of the Laramie anorthosite complex, Wyoming: petrologic consequences and U-Pb ages. Am Mineral 80:1317–1327

    Google Scholar 

  • Sisson TW, Grove TL (1993) Temperatures and H2O contents of low MgO high-alumina basalts. Contrib Mineral Petrol 113:167–184

    Article  Google Scholar 

  • Soderlund U, Patchett PJ, Vervoort JD, Isachsen CE (2004) The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth Planet Sci Lett 219:311–324

    Article  Google Scholar 

  • Souders AK, Sylvester PJ (2008) Improved in situ measurements of lead isotopes in silicate glasses by LA-MC-ICPMS using multiple ion counters. J Anal At Spectrom 23:535–543. doi:10.1039/b713934a

    Article  Google Scholar 

  • Souders AK, Sylvester PJ (2010) Accuracy and precision of non-matrix-matched calibration for lead isotope ratio measurements of lead-poor minerals by LA-MC-ICPMS. J Anal At Spectrom 25:975–988. doi:10.1039/c002729d.6

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steele IM, Bishop FC, Smith JV, Windley BF (1977) The Fiskenæsset complex, West Greenland, part III. Chemistry of silicates and oxide minerals from oxide bearing rocks, mostly from Qeqertarssuatsiaq. Grønl Geol Unders Bull 124:38

    Google Scholar 

  • Stracke AM, Bizimis M, Salters VJM (2003) Recycling oceanic crust: quantitative constraints. Geochem Geophys Geosyst 4:8003. doi:10.1020/2001GC000223

    Article  Google Scholar 

  • Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation–inductively coupled plasma–mass spectrometry (ELA–ICP–MS) using a synthetic silicate glass standard. Chem Geol 141:49–65

    Article  Google Scholar 

  • Takagi D, Sata H, Nakagawa M (2005) Experimental study of a low alkali tholeiite at 1–5 kbar: optimal condition for the crystallization of high-An plagioclase in hydrous arc tholeiite. Contrib Mineral Petrol 149:527–540

    Article  Google Scholar 

  • Taylor GJ (2009) Ancient lunar crust: origin, composition, and implications. Elements 5:17–22

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265

    Article  Google Scholar 

  • Taylor PN, Moorbath S, Goodwin R, Petrykowski AC (1980) Crustal contamination as an indicator of the extent of early Archean continental crust: Pb isotopic evidence from the late Archean gneisses of West Greenland. Geochim Cosmochim Acta 44:1437–1453

    Article  Google Scholar 

  • Tessalina SG, Bourdon B, Van Kranendonk M, Birck J-L, Philippot P (2010) Influence of Hadean crust evident in basalts and cherts from the Pilbara Craton. Nature Geosci 3:214–217

    Article  Google Scholar 

  • Tolstikhin IN, Kramers JD, Hofmann AW (2006) A chemical earth model with whole mantle convection: the importance of a core-mantle boundary layer (D”) and its early formation. Chem Geol 226:79–99

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Weaver BL, Tarney J, Windley B, Leake BE (1982) Geochemistry and petrogenesis of Archean metavolcanic amphibolites from Fiskenæsset, S.W. Greenland. Geochim Cosmochim Acta 46:2203–2215

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Ga ago. Nature 409:175–178

    Article  Google Scholar 

  • Windley BF (1971) The stratigraphy of the Fiskenæsset anorthosite complex. Grønl Geol Unders Rapport 35:19–21

    Google Scholar 

  • Windley BF, Garde AA (2009) Arc-generated blocks with crustal sections in the North Atlantic craton of West Greenland; new mechanism of crustal growth in the Archean with modern analogues. Earth Sci Rev 93:1–30

    Article  Google Scholar 

  • Windley BF, Herd RK, Bowden AA (1973) The Fiskenæsset complex, west Greenland. Part I: a preliminary study of the stratigraphy, petrology, and whole rock chemistry from Qeqertarssuatsiaq. Grønl Geol Unders Bull 106:54

    Google Scholar 

  • Zeh A, Gerdes A, Barton J Jr, Klemd R (2010) U-Th-Pb and Lu-Hf systematics of zircon from TTG’s leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Res 179:50–68

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kate Souders.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souders, A.K., Sylvester, P.J. & Myers, J.S. Mantle and crustal sources of Archean anorthosite: a combined in situ isotopic study of Pb–Pb in plagioclase and Lu–Hf in zircon. Contrib Mineral Petrol 165, 1–24 (2013). https://doi.org/10.1007/s00410-012-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-012-0789-6

Keywords

Navigation