Skip to main content
Log in

Evolution of pantellerite-trachyte-phonolite volcanoes by fractional crystallization of basanite magma in a continental rift setting, Marie Byrd Land, Antarctica

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Marie Byrd Land province includes 18 large (up to 1,800 km3) central volcanoes distributed across an active volcano-tectonic dome. The typical volcano structure consists of a basal 1,000–5,000 m of basanite surmounted by trachyte and subordinate intermediate rocks, plus phonolite, or pantellerite, or comendite. The volumes of felsic sections are large (~30–700 km3), but these rocks probably make up <10% of volcanic rock in the province. This paper describes pantellerite volcanoes in the Ames and Flood Ranges, which include a large and varied suite of these iron-rich, silica-poor rhyolites. Isotopic and trace element data, maintenance of isotopic equilibrium throughout the basalt-felsic range, and the results of modeling, all exclude significant crustal contamination and point to fractional crystallization as the process that controls magmatic evolution. The most unusual feature of these volcanoes is the apparent need to derive pantellerites from basanite, the long interval of fractionation at the base of the lithosphere and crust, involving kaersutite as the key phase in developing pantellerite, and a plumbing system that permitted coeval eruption of pantellerite and phonolite from the same edifice. Peralkalinity most likely developed in upper crustal reservoirs during the final 4–5% of magmatic history, by fractionating a high proportion of plagioclase under low pH2O. Mantle plume activity appears to drive doming and volcanism. This, a stationary plate, and continental lithospheric structure seem to provide an optimal environment for the evolution of a diverse, large volume suite of felsic rocks by fractional crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Andres M, Blichert-Toft J, Schilling J (2004) Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth Planet Sci Lett 225:89–103

    Article  Google Scholar 

  • Arculus RJ (1975) Melting behaviour of two basanites in the range 10–35 kbar and the effect of TiO2 on the olivine-diopside reactions at high pressures. Carnegie Inst Washington Yearb 74:512–515

    Google Scholar 

  • Bailey DK (1974) Experimental petrology relating to oversaturated peralkaline volcanics: a review. Bull Volcanol 38:637–652

    Article  Google Scholar 

  • Barberi F, Santacroce R, Varet J (1974) Silicic peralkaline volcanic rocks of the Afar Depression (Ethiopia). Bull Volcanol 38:755–790

    Article  Google Scholar 

  • Bence AE, Albee AL (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J Geol 76:382–403

    Article  Google Scholar 

  • Bentley CR, Clough JW (1972) Antarctic subglacial structure from seismic refraction measurements. In: Adie R (ed) Antarctic geology and geophysics. Universitetsforlaget, Oslo, pp 683–691

    Google Scholar 

  • Berg JH, Herz DL (1986) Thermobarometry of two-pyroxene-granulite inclusions in Cenozoic volcanic rocks of the McMurdo Sound region. Ant J US 21:19–20

    Google Scholar 

  • Best MG (1970) Kaersutite-peridotite inclusions and kindred megacrysts in basanitic lavas, Grand Canyon, Arizona. Contrib Mineral Petrol 27:25–44

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F, Kornprobst J (1999) Lu-Hf isotope systematics of garnet pyroxenites from Beni Bousera, Morocco: implications for basalt origin. Science 283:1303–1306

    Article  Google Scholar 

  • Blichert-Toft J, Agranier A, Andres M, Kingsley R, Schilling J, Albarède F (2005) Geochemical segmentation of the Mid-Atlantic Ridge north of Iceland and ridge-hot spot interaction in the North Atlantic. Geochem Geophys Geosys 6:1–27

    Article  Google Scholar 

  • Bohrson WA, Reid MR (1997) Genesis of silicic peralkaline volcanic rocks in an ocean island setting by crustal melting and open-system processes. J Petrol 38:1137–1166

    Article  Google Scholar 

  • Bowen NL (1928) The evolution of igneous rocks. Dover, New York

    Google Scholar 

  • Cande SC, Stock JM, Müller RD, Ishihara T (2000) Cenozoic motion between East and West Antarctica. Nature 404:145–150

    Article  Google Scholar 

  • Cawthorn RG, Curran EB, Arculus RJ (1973) A petrogenetic model for the origin of the calc-alkaline suite of Grenada, Lesser Antilles. J Petrol 14:327–337

    Google Scholar 

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Article  Google Scholar 

  • Christiansen RL (1990) Shasta. In: Wood CA, Kienle J (eds) Volcanoes of North America: United States and Canada. Cambridge University Press, Cambridge, pp 214–216

    Google Scholar 

  • Civetta L, D’Antonio M, Orsi G, Tilton GR (1998) The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of the mantle source region. J Petrol 39:1453–1491

    Article  Google Scholar 

  • Cooper AK, Davey FJ, Hinz K (1991) Crustal extension and origin of sedimentary basins beneath the Ross Sea and Ross Ice Shelf, Antarctica. In: Thomson MRA, Crame JA, Thomson JW (eds) The geological evolution of Antarctica. Cambridge University Press, Cambridge, pp 285–291

    Google Scholar 

  • Drewry DJ (1983) Antarctica: glaciological and geophysical folio. Scott Polar Research Institute, University of Cambridge, Cambridge

    Google Scholar 

  • Edgar AD (1987) The genesis of alkaline magmas with emphasis on their source regions: Inferences from experimental studies. In: Fitton JG, Upton BGJ (eds) Alkaline igneous rocks. Geological Society, London, Special Publication 30: 29–52

  • Fitton JG, James D, Kempton PD, Ormerod DS, Leeman WP (1988) The role of lithospheric mantle in the generation of late Cenozoic magmas in the western United States. In: Menzies MA, Cox KG (eds) Oceanic and continental lithosphere. J Petrol Spec Lithosphere Issue, pp 331–349

  • Freise M, Holtz F, Nowak M, Scoates JS, Strauss H (2009) Differentiation and crystallization conditions of basalts from the Kerguelen large igneous province: an experimental study. Contrib Mineral Petrol 158:505–527

    Article  Google Scholar 

  • Futa K, LeMasurier WE (1983) Nd and Sr isotopic studies on Cenozoic mafic lavas from West Antarctica: another source for continental alkali basalts. Contrib Mineral Petrol 83:38–44

    Article  Google Scholar 

  • Gaetani GA, Grove TL, Bryan WB (1993) The influence of water on the petrogenesis of subduction-related igneous rocks. Nature 365:332–334

    Article  Google Scholar 

  • Gagnevin D, Ethien R, Bonin B, Moine B, Féraud G, Gerbe MC, Cottin JY, Michon G, Tourpin S, Mamias G, Perrache C, Giret A (2003) Open-system processes in the genesis of silica-oversaturated alkaline rocks of the Rallier-du-Baty Peninsula, Kerguelen Archipelago (Indian Ocean). J Volcanol Geotherm Res 123:267–300

    Article  Google Scholar 

  • Gardner JE, Layer PW, Rutherford MJ (2002) Phenocrysts versus xenocrysts in the youngest Toba Tuff: implications for the petrogenesis of 2800 km3 of magma. Geology 30:347–350

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Gibson IL (1972) The chemistry and petrogenesis of a suite of pantellerites from the Ethiopian rift. J Petrol 13:31–44

    Google Scholar 

  • Goldich SS, Treves SB, Suhr NH, Stuckless JS (1975) Geochemistry of the Cenozoic volcanic rocks of Ross Island and vicinity, Antarctica. J Geol 83:415–435

    Article  Google Scholar 

  • Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Mineral Petrol 15:103–190

    Article  Google Scholar 

  • Green DH, Edgar AD, Beasley P, Kiss E, Ware NG (1974) Upper mantle source for some hawaiites, mugearites and benmoreites. Contrib Mineral Petrol 48:33–43

    Article  Google Scholar 

  • Hanan BB, Blichert-Toft J, Pyle DG, Christie DM (2004) Contrasting origins of the upper mantle revealed by hafnium and lead isotopes from the Southeast Indian Ridge. Nature 432:91–94

    Article  Google Scholar 

  • Hart SR (1984) A large-scale isotope anomaly in the southern hemisphere mantle. Nature 309:753–757

    Article  Google Scholar 

  • Hart SR, Blusztajn J, LeMasurier WE, Rex DC (1997) Hobbs Coast Cenozoic volcanism: implications for the West Antarctic rift system. Chem Geol 139:223–248

    Article  Google Scholar 

  • Hofman AW, White WM (1983) Ba, Rb and Cs in the Earth’s mantle. Z Naturforsch 38a:256–266

    Google Scholar 

  • Hole MJ, LeMasurier WE (1994) Tectonic controls on the geochemical composition of Cenozoic, mafic alkaline volcanic rocks from West Antarctica. Contrib Mineral Petrol 117:187–202

    Article  Google Scholar 

  • Irving AJ, Green DH (1972) Experimental study of phase relationships in a high pressure mugearitic basalt as a function of water content. Geol Soc America Abs with Programs 4:550–551

    Google Scholar 

  • Irving AJ, Green DH (2008) Phase relationships of hydrous alkalic magmas at high pressures: production of nepheline hawaiite to mugearitic liquids by amphibole-dominated fractional crystallization within the lithospheric mantle. J Petrol 49:741–756

    Article  Google Scholar 

  • Knutson T, Green TH (1975) Experimental duplication of a high pressure megacryst/cumulate assemblage in a near-saturated hawaiite. Contrib Mineral Petrol 52:121–132

    Article  Google Scholar 

  • Kyle PR (1981) Mineralogy and geochemistry of a basanite to phonolite sequence at Hut Point Peninsula, Antarctica, based on core from Dry Valley Drilling Project Drill holes 1, 2, and 3. J Petrol 22:451–500

    Google Scholar 

  • Kyle PR (1990) Erebus volcanic province summary. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series vol 48. American Geophysical Union, Washington, DC, pp 81–88

    Google Scholar 

  • Larter RD, Cunningham AP, Barker PF, Gohl K, Nitsche FO (2002) Tectonic evolution of the Pacific margin of Antarctica, 1. Late Cretaceous tectonic reconstructions. J Geophys Res 107:2345

    Article  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • Leat PT, Macdonald R, Smith RL (1984) Geochemical evolution of the Menengai caldera volcano, Kenya. J Geophys Res 89:8571–8592

    Article  Google Scholar 

  • LeMasurier WE (1990) Mount Sidley. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series vol 48. American Geophysical Union, Washington DC, pp 203–206

    Chapter  Google Scholar 

  • LeMasurier WE (2008) Neogene extension and basin deepening in the West Antarctic rift inferred from comparisons with the East African rift and other analogs. Geology 36:247–250. doi:10.1130/G24363A.1

    Article  Google Scholar 

  • LeMasurier WE, Landis CA (1996) Mantle plume activity recorded by low-relief erosion surfaces in West Antarctica and New Zealand. Geol Soc Am Bull 108:1450–1466

    Article  Google Scholar 

  • LeMasurier WE, Rex DC (1989) Evolution of linear volcanic ranges in Marie Byrd Land, West Antarctica. J Geophys Res 94:7223–7236

    Article  Google Scholar 

  • LeMasurier WE, Thomson JW (eds) (1990) Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series vol 48. American Geophysical Union, Washington DC, p 487

    Google Scholar 

  • LeMasurier WE, Kawachi Y, Rex DC (1990) Mt. Murphy. In: LeMasurier WE, Thomson JW (eds) Volcanoes of the Antarctic Plate and Southern Oceans, Antarctic Research Series vol 48. American Geophysical Union, Washington DC, pp 164–168

    Chapter  Google Scholar 

  • LeMasurier WE, Harwood DM, Rex DC (1994) Geology of Mount Murphy volcano: an 8-m.y. history of interaction between a rift volcano and the West Antarctic ice sheet. Geol Soc Am Bull 106:265–280

    Article  Google Scholar 

  • LeMasurier WE, Futa K, Hole M, Kawachi Y (2003) Polybaric evolution of Phonolite, Trachyte, and Rhyolite Volcanoes in Eastern Marie Byrd Land, Antarctica: controls on peralkalinity and silica saturation. Inter Geol Rev 45:1055–1099

    Article  Google Scholar 

  • Lowenstern JB, Mahood GA (1991) New data on magmatic H2O contents of pantellerites, with implications for petrogenesis and eruptive dynamics at Pantelleria. Bull Volcanol 54:78–83

    Article  Google Scholar 

  • Macdonald R (1974) Nomenclature and petrochemistry of the peralkaline oversaturated extrusive rocks. Bull Volcanol 38:498–516

    Article  Google Scholar 

  • Macdonald R, Bailey DK (1973) The chemistry of the peralkaline oversaturated obsidians. In: Fleischer M (ed) Data of Geochemistry, 6th edn, Chap N. Chemistry of igneous rocks. US Geological Survey Prof Paper 440-N-1, p 37

  • Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. J Petrol 5:82–133

    Google Scholar 

  • Macdonald R, Belkin HE, Fitton JG, Rogers NW, Nejbert K, Tindle AG, Marshall AS (2008) The roles of fractional crystallization, magma mixing, crystal mush remobilization and volatile-melt interactions in the genesis of a young basalt-peralkaline rhyolite suite, the Greater Olkaria Volcanic Complex, Kenya rift valley. J Petrol 49:1515–1547

    Article  Google Scholar 

  • McDonough WF, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Merrill RB, Wyllie PJ (1975) Kaersutite and kaersutite eclogite from Kakanui, New Zealand—water excess and water deficient melting relations to 30 kilobars. Geol Soc Am Bull 86:555–570

    Article  Google Scholar 

  • Mukasa SB, Dalziel IWD (2000) Marie Byrd Land, West Antarctica: evolution of Gondwana’s Pacific margin constrained by zircon U-Pb geochronology and feldspar common-Pb isotopic compositions. Geol Soc Am Bull 112:611–629

    Article  Google Scholar 

  • Mukasa SB, McCabe R, Gill JB (1987) Pb-isotopic compositions of volcanic rocks in the west and east Philippine island arcs: presence of the Dupal isotopic anomaly. Earth Planet Sci Lett 84:153–164

    Article  Google Scholar 

  • Mukasa SB, Shervais JW, Wilshire HG, Nielson JE (1991) Intrinsic Nd, Pb, and Sr isotopic heterogeneities exhibited by the Lherz alpine peridotite massif, French Pyrenees. J Petrol Special Lherzolite Volume:117–134

  • Mungall JE, Martin RF (1995) Petrogenesis of basalt-comendite and basalt-pantellerite suites, Terceira, Azores, and some implications for the origin of ocean-island rhyolites. Contrib Mineral Petrol 119:43–55

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosyst 2. doi:10/1029:2001GC000183

  • Neuman H, Mead J, Vitaliano CJ (1954) Trace element variation during fractional crystallization as calculated from the distribution law. Geochim Cosmochim Acta 6:90–100

    Article  Google Scholar 

  • O’Hara MJ, Mathews RE (1981) Geochemical evolution in an advancing, periodically replenished, periodically tapped, continuously fractionated magma chamber. J Geol Soc London 138:237–277

    Article  Google Scholar 

  • Pankhurst RJ, Weaver SD, Bradshaw JD, Storey BC, Ireland TR (1998) Geochronology and geochemistry of pre-Jurassic superterranes in Marie Byrd Land, Antarctica. J Geophys Res 103:2529–2547

    Article  Google Scholar 

  • Panter KS, McIntosh WC, Smellie JL (1994) Volcanic history of Mount Sidley, a major alkaline volcano in Marie Byrd Land, Antarctica. Bull Volcanol 56:361–376

    Google Scholar 

  • Panter KS, Hart SR, Kyle P, Blusztajn J, Wilch T (2000) Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources in Marie Byrd Land, Antarctica. Chem Geol 165:215–241

    Article  Google Scholar 

  • Peccerillo A, Barberio MR, Yirgu G, Ayalew D, Barbieri M, Wu TW (2003) Relationships between mafic and peralkaline silicic magmatism in continental rift settings: a petrological, geochemical and isotopic study of the Gedemsa Volcano, central Ethiopian rift. J Petrol 44:2003–2032

    Article  Google Scholar 

  • Petrelli M, Poli G, Perugini D, Peccerillo A (2005) PetroGraph: a new software to visualize, model, and present geochemical data in igneous petrology. Geochem Geophys Geosys. doi:10.1029/2005GC000932

  • Pilet S, Ulmer P, Villiger S (2010) Liquid line of descent of a basanitic liquid at 1.5 Gpa: constraints on the formation of metasomatic veins. Contrib Mineral Petrol 159:621–643

    Article  Google Scholar 

  • Price RC, Green DH (1972) Lherzolite nodules in a “mafic phonolite” from northeast Otago, New Zealand. Nature Phys Sci 235:133–134

    Google Scholar 

  • Ren M, Omenda PA, Anthony EY, White JC, Macdonald R, Bailey DK (2006) Application of the QUILF thermobarometer to the peralkaline trachytes and pantellerites of the Eburru volcanic complex, East African rift, Kenya. Lithos 91:109–124

    Article  Google Scholar 

  • Ritzwoller MH, Shapiro N, Levshin AL, Leahy GM (2001) Crustal and upper mantle structure beneath Antarctica and surrounding oceans. J Geophys Res 106:30645–30670

    Article  Google Scholar 

  • Rocchi S, LeMasurier WE, Di Vincenzo G (2006) Oligocene to Holocene erosion and glacial history in Marie Byrd Land, West Antarctica, inferred from exhumation of the Dorrel Rock intrusive complex and from volcano morphologies. Geol Soc Am Bull 118:991–1005. doi:10.1130/B25675.1

    Article  Google Scholar 

  • Rogers NW (2006) Basaltic magmatism and the geodynamics of the East African rift system. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African rift system. Geological Society, London, Special Publications 259:77–93

  • Sack RO, Walker D, Carmichael ISE (1987) Experimental petrology of alkalic lavas: constraints on cotectics of multiple saturation in natural basic liquids. Contrib Mineral Petrol 96:1–23

    Article  Google Scholar 

  • Salters VJM (1996) The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Planet Sci Lett 141:109–123

    Article  Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraint on mantle evolution. Chem Geol 145:447–460

    Article  Google Scholar 

  • Steinberger B, Sutherland R, O’Connell RJ (2004) Prediction of Emperor-Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430:167–173. doi:10.1038/nature02660

    Article  Google Scholar 

  • Stormer JC, Nicholls J (1978) XLFRAC: a program for the interactive testing of magmatic differentiation models. Comput Geosci 4:143–159

    Article  Google Scholar 

  • Stuckless JS, Ericksen RL (1976) Strontium isotopic geochemistry of the volcanic rocks and associated megacrysts and inclusions from Ross Island and vicinity, Antarctica. Contrib Mineral Petrol 58:111–126

    Article  Google Scholar 

  • Stuckless JS, Miesch AT, Goldich SS, Weiblen PW (1981) A Q-mode factor model for the petrogenesis of the volcanic rocks from Ross Island and vicinity, Antarctica. In: McGinnis LD (ed) Dry valley drilling project, Antarctic Research Series, vol 33. American Geophysical Union, Washington, DC, pp 257–280

    Chapter  Google Scholar 

  • Sun S-S, Hanson GN (1976) Rare earth element evidence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contrib Mineral Petrol 54:139–155

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Pub 42:313–345

    Article  Google Scholar 

  • Takahashi E (1980) Melting relations of an alkali olivine basalt to 30 kbar, and their bearing on the origin of alkali basalt magmas. Carnegie Inst Washington Yearb 79:271–276

    Google Scholar 

  • Weaver SD (1976–1977) The Quaternary caldera volcano Emuruangogolak, Kenya rift, and the petrology of a bimodal ferrobasalt-pantelleritic trachyte association. Bull Volcanol 40:209–230

    Google Scholar 

  • White JC, Parker DF, Ren M (2009) The origin of trachyte and pantellerite from Pantelleria, Italy: insights from major element, trace element, and thermodynamic modelling. J Volcan Geotherm Res 179:33–55

    Article  Google Scholar 

  • Wilch TI, McIntosh WC, Dunbar NW (1999) Late Quaternary volcanic activity in Marie Byrd Land: potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores. Geol Soc Am Bull 111:1563–1580

    Article  Google Scholar 

  • Wilkinson JFG, Hensel HD (1991) An analcime mugearite-megacryst association from north-eastern New South Wales: implications for high pressure amphibole-dominated fractionation of alkaline magmas. Contrib Mineral Petrol 109:240–251

    Article  Google Scholar 

  • Winberry JP, Anandakrishnan S (2004) Crustal structure of the West Antarctic rift system and Marie Byrd Land hotspot. Geology 32:977–980

    Article  Google Scholar 

  • Wood BJ, Fraser DG (1976) Elementary thermodynamics for geologists. Oxford University Press, New York, p 303

    Google Scholar 

  • Wörner G, Zipfel J (1996) A mantle P-T path for the Ross Sea Rift margin (Antarctica) derived from Ca-in-olivine zonation patterns in peridotite xenoliths of the Plio-Pleistocene Mt. Melbourne volcanic field. Geol Jb B89:157–167

    Google Scholar 

  • Wright TL, Doherty PC (1970) A linear programming and least squares computer method for solving petrologic mixing problems. Geol Soc Am Bull 81:1995–2008

    Article  Google Scholar 

  • Wysoczanski RJ, Gamble JA, Kyle PR, Thirlwall MF (1995) The petrology of lower crustal xenoliths from the Executive Committee Range, Marie Byrd Land Volcanic Province, West Antarctica. Lithos 36:185–201

    Article  Google Scholar 

  • Yoder HS, Tilley CE (1962) Origin of basalt magmas: an experimental study of natural and synthetic rock systems. J Petrol 3:342–532

    Google Scholar 

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    Article  Google Scholar 

Download references

Acknowledgments

Work on the origin of pantellerites in the Ames and Flood Ranges was supported by NSF Grant #0536526 (to WEL). SHC gratefully acknowledges the support of the Polar Academic Program (PAP), Korea Polar Research Institute (KOPR). WEL is grateful to Dan Barker for constructive review of an early draft of the manuscript, Stan Hart for permission to include three previously unpublished isotope analyses in Tables 2 and 1S, Gary Ernst for advice about amphibole stability problems, and Dave Underwood for a great deal of help creating the figures. Critical reviews by Jake Lowenstern and Kurt Panter sharpened the focus and significantly improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley E. LeMasurier.

Additional information

Communicated by T. L. Grove.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeMasurier, W.E., Choi, S.H., Kawachi, Y. et al. Evolution of pantellerite-trachyte-phonolite volcanoes by fractional crystallization of basanite magma in a continental rift setting, Marie Byrd Land, Antarctica. Contrib Mineral Petrol 162, 1175–1199 (2011). https://doi.org/10.1007/s00410-011-0646-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0646-z

Keywords

Navigation