Skip to main content
Log in

The evolution of spinel lherzolite xenoliths and the nature of the mantle at Kilbourne Hole, New Mexico

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

In peridotites, olivine, clinopyroxene, and orthopyroxene are complex solid solutions with wide stability fields. Depending mostly on bulk composition and pressure, these minerals may be accompanied by plagioclase (low pressure), spinel (moderate pressure), or garnet (high pressure), resulting in 4-phase and rarer 5-phase assemblages. Although a particular mineral assemblage is stable over a range of P–T, the compositions of the individual minerals vary with changing P–T conditions. Application of standard geothermobarometers to olivine–clinopyroxene–orthopyroxene–spinel peridotites is problematic. An alternative approach is to use a bulk rock composition to calculate equilibrium phase diagrams to determine the conditions under which a particular assemblage is stable. This requires consideration of the 7-component system SiO2–Al2O3–Cr2O3–FeO–MgO–CaO–Na2O, internally consistent thermodynamic data for end members, and reliable mixing models for all mineral solutions. Experimental studies in simpler systems, and solution models from the literature, permit derivation of multicomponent thermodynamic mixing models for the key minerals. The models, when applied to xenoliths from Kilbourne Hole, constrain P and T of equilibration and are less sensitive to mineral compositional variations, or uncertainty in activity models, than standard thermobarometry. Our modeling provides the first tightly constrained pressure estimates for Kilbourne Hole, placing the xenoliths in the spinel stability field at depths (30–45 km) that correspond to the uppermost mantle beneath the Rio Grande Rift. The fine-grained equigranular lherzolite, porphyroclastic lherzolite, and some harzburgite-dunite specimens equilibrated at average conditions of 11.5 Kbar-930°C, 12 Kbar-990°C, and 13 Kbar-1,080°C, respectively. The mantle beneath the Rio Grande Rift is layered; the fine-grained equigranular lherzolite derives from relatively shallow depth (35 km average), and the porphyroclastic lherzolite from slightly deeper levels. Lying 5–10 km beneath both lherzolites, the harzburgite-dunite represents a depth where melt extraction has significantly altered mantle chemistry and where local thermodynamic equilibrium has not been maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ai Y (1994) A revision of the garnet-clinopyroxene Fe2+-Mg exchange geothermometer. Contrib Mineral Petrol 115:467–473

    Article  Google Scholar 

  • Anthony EY, Poths J (1992) 3He surface exposure dating and its implications for magma evolution in the Potrillo volcanic field, Rio Grande Rift, New Mexico, USA. Geochim Cosmochim Acta 56:4105–4108

    Article  Google Scholar 

  • Anthony EY, Hoffer JM, Waggoner WK, Chen W (1992) Compositional diversity in late Cenozoic mafic lavas in the Rio Grande rift and Basin and Range province, southern New Mexico. Geol Soc Am Bull 104:973–979

    Article  Google Scholar 

  • Arai S (1994) Characterization of spinel peridotites by olivine-spinel compositional relationships: review and interpretation. Chem Geol 113:191–204

    Article  Google Scholar 

  • Aranovich LY, Berman RG (1996) Optimized standard state and solution properties of minerals. II. Comparisons, predictions, and applications. Contrib Mineral Petrol 126:25–37

    Article  Google Scholar 

  • Aranovich LY, Berman RG (1997) A new orthopyroxene-garnet thermometer based on reversed Al2O3 solubilities in orthopyroxene in the FeO-Al2O3-SiO2 system. Am Mineral 82:345–353

    Google Scholar 

  • Aranovich LY, Pattison DRM (1995) Reassessment of the garnet-clinopyroxene Fe-Mg exchange thermometer: I. Reanalysis of the Pattison and Newton (1989) run products. Contrib Mineral Petrol 119:16–29

    Article  Google Scholar 

  • Averill MG (2007) A lithospheric investigation of the southern Rio Grande rift. Univ Texas El Paso, Unpub PhD dissertation, p. 229

  • Benisek A, Etzel K, Cemic L (2007) Thermodynamic mixing behavior of synthetic Ca-Tschermak-diopside pyroxene solutions: II. Heat of mixing and activity-composition relationships. Phys Chem Minerals 34:747–755

    Article  Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Berman RG (1990) Mixing properties of Ca–Mg–Fe–Mn garnets. Am Mineral 75:328–344

    Google Scholar 

  • Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Quantitative methods in petrology: an issue in honor of Hugh J. Greenwood. Gordon TM, Martin RF, Eds. Can Mineral 29:833–855

  • Berman RG (2007) winTWQ (version 2.3): a software package for performing internally-consistent thermobarometric calculations. Geol Surv Canada, Open File 5462

  • Berman RG, Aranovich LY (1996) Optimized standard state and solution properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contrib Mineral Petrol 126:1–24

    Article  Google Scholar 

  • Berman RG, Brown TH, Greenwood HJ (1985) A thermodynamic data base for minerals in the system Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–SiO2–TiO2–H2O-CO2. Atomic Energy of Canada Ltd Tech Rep 377:70

    Google Scholar 

  • Berman RG, Aranovich LY, Pattison DRM (1995) Reassessment of the garnet-clinopyroxene Fe-Mg exchange thermometer: II. Thermodynamic analysis. Contrib Mineral Petrol 119:30–42

    Article  Google Scholar 

  • Bjerg EA, Ntaflos T, Thoni M, Aliani P, Labudia CH (2009) Heterogeneous lithospheric mantle beneath northern Patagonia: evidence from Prahuaniyeu garnet- and spinel-peridotites. J Petrol 50:1267–1298

    Article  Google Scholar 

  • Bohlen SR, Essene EJ, Boettcher AL (1980) Reinvestigation and application of olivine-quartz-orthopyroxene barometry. Earth Plan Sci Lett 47:1–10

    Article  Google Scholar 

  • Brey GP, Köhler T (1990a) Geothermobarometry in four phase lherzolites Pt I: experimental results from 10 to 60 Kb. J Petrol 31:1313–1352

    Google Scholar 

  • Brey GP, Köhler T (1990b) Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378

    Google Scholar 

  • Bussod GYA, Irving AJ (1981) Thermal and rheologic history of the upper mantle beneath the southern Rio Grande Rift; evidence from Kilbourne Hole xenoliths. Lunar Planet Sci Inst Contrib 457:145–148

    Google Scholar 

  • Bussod GYA, Williams DR (1991) Thermal and kinematic model of the southern Rio Grande rift: inferences from crustal and mantle xenoliths from Kilbourne Hole, New Mexico. Tectonophysics 1897:373–389

    Article  Google Scholar 

  • Carter JL (1970) Mineralogy and chemistry of the Earth’s upper mantle based on the partial fusion-partial crystallization model. Geol Soc Am Bull 81:2021–2034

    Article  Google Scholar 

  • Chatterjee ND, Krüger R, Haller G, Olbricht W (1998) The Bayesian approach to an internally consistent thermodynamic database: theory, database, and generation of phase diagrams. Contrib Mineral Petrol 133:149–168

    Article  Google Scholar 

  • Danckwerth PA, Newton RC (1978) Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900°–1100°C and Al2O3 isopleths of enstatite in the spinel field. Contrib Mineral Petrol 66:189–201

    Article  Google Scholar 

  • Davidson PM, Lindsley DH (1989) Thermodynamic analysis of pyroxene-olivine-quartz equilibria in the system CaO-MgO-FeO-SiO2. Am Mineral 74:18–30

    Google Scholar 

  • de Capitani C, Petrakakis K (2009) THERIAK-DOMINO user’s guide. Version 01.08.09 (unpublished; available at http://titan.minpet.unibas.ch/minpet/theriak/theruser.html)

  • de Capitani C, Petrakakis K (2010) The computation of equilibrium assemblage diagrams with Theriak/Domino software. Am Mineral 95:1006–1016

    Article  Google Scholar 

  • Dixon, JR (1980) A spinel lherzolite barometer. Ph.D. Thesis, Univ Texas, Dallas

  • Ducea M, Sen G, Eiler J, Fimbres J (2002) Melt depletion and subsequent metasomatism in the shallow mantle beneath Koolau volcano, Oahu (Hawaii). Geochem, Geophys, Geosyst (G3) 3:1029

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Gasparik T (1984) Experimental study of subsolidus phase relations and mixing properties of pyroxene in the system CaO-Al2O3-SiO2. Geochim Cosmochim Acta 48:2537–2545

    Article  Google Scholar 

  • Gasparik T, Newton RC (1984) The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2. Contrib Mineral Petrol 85:186–196

    Article  Google Scholar 

  • Girnis AV, Brey GP (1999) Garnet-spinel-olivine-orthopyroxene equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system: II. Thermodynamic analysis. Eur J Mineral 11:619–636

    Google Scholar 

  • Hamblock JM, Andronicos CL, Miller KC, Barnes CG, Ren M-H, Averill MG, Anthony EY (2007) A composite geologic and seismic profile beneath the southern Rio Grande rift, New Mexico, based on xenolith mineralogy, temperature, and pressure. Tectonophys 442:14–48

    Article  Google Scholar 

  • Hart SR, Zindler A (1986) In search of bulk Earth composition. Chem Geol 57:247–267

    Article  Google Scholar 

  • Hellebrand E, Snow JE, Dick HJB, Hoffmann AW (2001) Coupled major and trace elements as indicators of the extent of melting in mid-ocean ridge peridotites. Nature 410:677–681

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally-consistent thermodynamic dataset for phases of petrological interest. J Met Geol 16:309–344

    Article  Google Scholar 

  • Ionov DA, Ashchepkov IV, Stosch H-G, Witt-Eickschen G, Seck HA (1993) Garnet peridotite xenoliths from the Vitim Volcanic Field, Baikal Region: the nature of the garnet-spinel peridotite transition zone in the continental mantle. J Petrol 34:1141–1175

    Google Scholar 

  • Irving A (1980) Petrology and geochemistry of composite ultramafic xenoliths in alkali basalts and implications for magmatic processes within the mantle. Am J Sci 280-A:389–426

    Google Scholar 

  • Jagoutz E, Palme H, Baddenhausen H, Blum K, Cendales M, Dreibus G, Spettal B, Lorenz V, Wane H (1979) The abundance of major, minor, and trace elements in the Earth’s mantle as derived from primitive ultramafic nodules. In: Proceedings of 10th lunar planet science conference, pp 2031–2050

  • Jaques AL, Green DH (1980) Anhydrous melting of peridotite at 0–15 kb pressure and the genesis of tholeiitic basalts. Contrib Mineral Petrol 73:287–310

    Article  Google Scholar 

  • Jenkins DM, Newton RC (1979) Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1, 000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C with natural garnet and olivine. Contrib Mineral Petrol 68:407–419

    Article  Google Scholar 

  • Kawasaki T, Matsui Y (1977) Thermodynamic analyses of equilibria involving olivine, orthopyroxene and garnet. Geochim Cosmochim Acta 47:1661–1679

    Article  Google Scholar 

  • Kil Y, Wendlandt RF (2004) Pressure and temperature evolution of upper mantle under the Rio Grande Rift. Contrib Mineral Petrol 148:265–280

    Article  Google Scholar 

  • Kil Y, Wendlandt RF (2007) Depleted and enriched mantle processes under the Rio Grande rift: spinel peridotite xenoliths. Contrib Mineral Petrol 154:135–151

    Article  Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO-Cr2O3-SiO2 and thermodynamic modeling. Lithos 77(1–4):639–646

    Article  Google Scholar 

  • Kushiro I, Yoder HS (1966) Anorthite-forsterite and anorthite-enstatite reactions and their bearing on the basalt-eclogite transformation. J Petrol 7:337–362

    Google Scholar 

  • Lee HY, Ganguly J (1988) Fe2+-Mg fractionation between garnet and orthopyroxene: experimental determination in the FMAS system and application to geothermometry. J Petrol 29:93–113

    Google Scholar 

  • Lindsley DH (1981) The formation of pigeonite on the join hedenbergite-ferrosilite at 11.5 and 15 kbar: experiments and a solution model. Am Mineral 66:1175–1182

    Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Lindsley DH, Anderson DJ (1983) A two-pyroxene thermometer. J Geophys Res Supp 88:A887–A906 (Proceedings of 13th lunar planet science conference)

    Article  Google Scholar 

  • Lindsley DH, Munoz JL (1969) Subsolidus relations along the join hedenbergite-ferrosilite. Am J Sci 267A:295–324

    Google Scholar 

  • Loucks RR (1996) A precise olivine-augite Mg-Fe-exchange geothermometer. Contrib Mineral Petrol 125:140–150

    Article  Google Scholar 

  • Massone HJ (1992) Evidence for low-temperature ultrapotassic siliceous fluids in subduction zone environment from experiments in the system K2O–MgO–Al2O3–SiO2–H2O (KMASH). Lithos 28:421–434

    Article  Google Scholar 

  • McDonough W, Sun S (1995) The composition of the Earth. Chem Geol 37:223–253

    Article  Google Scholar 

  • Mercier J-CC (1980) Single pyroxene thermobarometry. Tectonophys 70:1–37

    Article  Google Scholar 

  • Meyre C, de Capitani C, Partzsch JH (1997) A ternary solid solution model for omphacite and its application to geothermobarometry of eclogites from the Middle Adula nappe (Central Alps, Switzerland). J Met Geol 15:687–700

    Article  Google Scholar 

  • Nickel KG (1986) Phase equilibria in the system SiO2-MgO-Al2O3-CaO-Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrb Miner Abh 155:259–287

    Google Scholar 

  • Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single-clinopyroxene thermobarometry for garnet peridotites: part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Onuma K, Tohara T (1984) The join CaMgSi2O6-CaAl2SiO6-CaCrAlSiO6 with special reference to chrome clinopyroxene and chrome spinel. Lithos 17:289–298

    Article  Google Scholar 

  • Pacalo REG, Gasparik T (1990) Reversals of the orthoenstatite-clinoenstatite transition at high pressures and high temperatures. J Geophys Res 95:15853–15858

    Article  Google Scholar 

  • Pattison DRM, Newton RC (1989) Reversed experimental calibration of the garnet-clinopyroxene Fe-Mg exchange thermometer. Contrib Mineral Petrol 101:87–103

    Article  Google Scholar 

  • Pearce JA, Barker PF, Edwards SJ, Parkinson IJ, Leat PT (2000) Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, South Atlantic. Contrib Mineral Petrol 139:36–53

    Article  Google Scholar 

  • Perkins D, Vielzeuf D (1992) Experimental investigation of Fe-Mg distribution between olivine and clinopyroxene: Implications for mixing properties of Fe-Mg in clinopyroxene and garnet-clinopyroxene thermometry. Am Mineral 77:774–783

    Google Scholar 

  • Perkins D III, Holland TJB, Newton RC (1981) Pyrope-enstatite equilibria at high pressure and temperature. Contrib Mineral Petrol 78:99–109

    Article  Google Scholar 

  • Porreca C, Selverstone J, Samuels K (2006) Pyroxenite xenoliths from the Rio Puerco volcanic field, New Mexico: melt metasomatism at the margin of the Rio Grande rift. Geosph 206:333–351

    Article  Google Scholar 

  • Powell R, Holland TJB (1988) An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Application methods, worked examples and a computer program. J Met Geol 6:173–204

    Article  Google Scholar 

  • Powell R, Holland TJB (1993) On the formulation of simple mixing models for complex phases. Am Mineral 78:1174–1180

    Google Scholar 

  • Presnall DC (1976) Alumina content of enstatite as a geobarometer for plagioclase and spinel lherzolites. Am Mineral 61:582–588

    Google Scholar 

  • Reid JR (1976) Upper and lower limits to the geothermal gradient beneath the southern Rio Grande rift. Geol Soc Am Abst Prog 8:621

    Google Scholar 

  • Reid MR, Hart SR, Padovani ER, Wandless GA (1989) Contribution of metapelitic sediments to the composition, heat production, and seismic velocity of the lower crust of southern New Mexico, USA. Earth Planet Lett 95:367–381

    Article  Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle metasomatism. Ann Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  • Roden MF, Irving AJ, Murthy RR (1988) Isotopic and trace element composition of the upper mantle beneath a young continental rift: Results from Kilbourne Hole, New Mexico. Geochim Cosmochim Acta 52:461–473

    Article  Google Scholar 

  • Seager WR (1987) Caldera-like collapse at Kilbourne Hole maar. New Mexico Geol 9:69–73

    Google Scholar 

  • Sen G, Leeman WP (1991) Iron-rich lherzolitic xenoliths from Oahu: origin and implications for Hawaiian magma sources. Earth Planet Sci Lett 102:45–57

    Article  Google Scholar 

  • Smith D (1999) Temperatures and pressures of mineral equilibration in peridotite xenoliths: review, discussion, and implications. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to Francis R (Joe) Boyd. Spec Pub Geochem Soc 6:171–188

  • Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jb Min Abh 172:381–408

    Google Scholar 

  • Thompson RN, Ottley CJ, Smith PM, Pearson DG, Dickin AP, Morrison MA, Leat PT, Gibson SA (2005) Source of the quaternary alkalic basalts, picrites and basanites of the Potrillo Volcanic Field, New Mexico, USA: lithosphere or convecting mantle? J Petrol 46:1603–1643

    Article  Google Scholar 

  • von Seckendorff V, O’Neill HSC (1993) An experimental study of Fe-Mg partitioning between olivine and orthopyroxene at 1173, 1273, and 1423 K and 1.6 GPa. Contrib Mineral Petrol 113:196–207

    Article  Google Scholar 

  • Williams WJW (1999) Evolution of quaternary intraplate mafic lavas from the Potrillo volcanic field, USA, and the San Quintin volcanic field, Mexico. Univ Texas El Paso. Unpub PhD dissertation, p 186

  • Wilshire JG, Shervais JW (1975) Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from western United States. Phys Chem Earth 9:257–272

    Article  Google Scholar 

  • Wilshire HG, Meyer C, Nakata JK, Calk LC, Shervais JW, Nielson JE, Schwarzman EC (1988) Mafic and ultramafic xenoliths from volcanic rocks of the western United States. U.S. Geol Surv Prof Pap 1443, p 179

  • Woodland AB, Angel RJ (1997) Reversal of the orthoferrosilite—high-P clinoferrosilite transition, a phase diagram for FeSi03 and implications for the mineralogy of the Earth’s upper mantle. Eur J Mineral 9:245–254

    Google Scholar 

  • Wörner G, Zipfel J (1996) A mantle P-T path for the Ross Sea rift margin, Antarctica, derived from mineral zoning in peridotite xenoliths. Geol Jb B 89:157–167

    Google Scholar 

  • Xu X, O`Reilly SY, Griffin WL, Zhou X (2000) Genesis of young lithospheric mantle in southeastern China: an LAM-ICPMS trace element study. J Petrol 41:111–148

    Article  Google Scholar 

  • Yoder HS Jr (1967) Spilites and serpentinites. Carn Inst Wash Year Book 65:269–283

    Google Scholar 

  • Zhou M-F, Robinson PT, Malpas J, Li Z (1996) Podiform chromites in the Loubasa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

Download references

Acknowledgments

Ashley Russell and Shannon Heinle contributed significantly to this project when they were undergraduate students working with DP at the University of North Dakota. EYA benefitted from many collaborations. Students Chris Long and Eric Kappus worked with her to collect samples and unravel petrography and chemical composition. For a number of years, the samples constituted an undergraduate petrology class project with many fine students. Minghua Ren worked with the students to provide mineral compositions. Randy Keller and Chris Andronicos were always great sounding boards for ideas about Rio Grande Rift evolution. This project was funded by a Texas NHARP grant (003661-0003-2006) to EYA and Robert Stern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dexter Perkins.

Additional information

Communicated by J. Blundy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perkins, D., Anthony, E.Y. The evolution of spinel lherzolite xenoliths and the nature of the mantle at Kilbourne Hole, New Mexico. Contrib Mineral Petrol 162, 1139–1157 (2011). https://doi.org/10.1007/s00410-011-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-011-0644-1

Keywords

Navigation