Skip to main content
Log in

Depleted and enriched mantle processes under the Rio Grande rift: spinel peridotite xenoliths

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Upper mantle xenoliths from the southern Rio Grande rift axis (Potrillo and Elephant Butte) and flank (Adam’s Diggings) have been investigated to determine chemical depletion and enrichment processes. The variation of modal, whole rock, and mineral compositions reflect melt extraction. Fractional melting is the likely process. Fractional melting calculations show that most spinel peridotites from rift axis locations have undergone <5% melting versus 7–14% melting for xenoliths from the rift shoulder, although the total range of fractional melting overlaps at all three locations. In the rift axis, deformed (equigranular and porphyroclastic texture) spinel peridotites are generally characterized by significantly less fractional melting (2–5%) than undeformed (protogranular) xenoliths (up to 16%). This difference may reflect undeformed xenoliths being derived from greater depths and higher temperatures than deformed rocks. Spinel peridotites from the axis and shoulder of the Rio Grande rift have undergone mantle metasomatism subsequent to melt extraction. Under the rift shoulder spinel peridotites have undergone both cryptic and patent (modal) metasomatism, possibly during separate events, whereas the upper mantle under the rift axis has undergone only cryptic metasomatism by alkali basaltic magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam J, Green TH (1994) The effects of pressure and temperature on the partitioning of Ti, Sr, and REE between amphibole, clinopyroxene and basanitic melts. Chem Geol 117:219–233

    Article  Google Scholar 

  • Aldrich MJJr, Chapin CE, Laughlin AW (1986) Stress history and tectonic development of the Rio Grande rift, New Mexico. J Geophys Res 91:6199–6211

    Google Scholar 

  • Bachman GO, Mehnert HH (1978) New K-Ar dates and the late Pliocene to Holocene geomorphic history of the central Rio Grande region, New Mexico. Geol Soc Am Bull 89:283–292

    Article  Google Scholar 

  • Baldridge WS (1979) Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere. J Volcanol Geotherm Res 6:319–351

    Article  Google Scholar 

  • Baldridge WS, Damon PE, Shafiqullah M, Bridwell RJ (1980) Evolution of the central Rio Grande rift, New Mexico: new potassium–argon ages. Earth Plant Sci Lett 51:309–321

    Article  Google Scholar 

  • Baldridge WS, Olsen KH, Callender JF (1984) Rio Grande rift: problems and perspectives. N M Geol Soc Guidebook 35:1–12

    Google Scholar 

  • Baldridge WS, Perry FV, Vaniman DT, Nealey LD, Leavy BD, Laughlin AW, Kyle P, Bartow Y, Steinitz G, Gladney ES (1991) Middle to late Cenozoic magmatism of the southeastern Colorado Plateau and central Rio Grande rift (New Mexico and Arizona, USA): a model for continental rifting. Tectonophysics 197:327–354

    Article  Google Scholar 

  • Baldridge WS, Keller GR, Haak V, Wendlandt E, Jiracek GR, Olsen KH (1995) The Rio Grande rift, In: Olsen KH (ed) Continental rifts: evolution, structure, tectonic. Elsevier, Amsterdam, pp 233–275

    Google Scholar 

  • Beccaluva L, Bonadiman C, Coltorti M, Salvini L, Siena F (2001) Depletion event, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto volcanic province. J Petrol 42:173–187

    Article  Google Scholar 

  • Bonatti E, Ottonello G, Hamlyn PR (1986) Peridotites from Island of Zabargad (St John) Red Sea: petrology and geochemistry. J Geophys Res 91:599–631

    Google Scholar 

  • Brown GC, Mussett AE (1981) The inaccessible Earth. Allen & Unwin, London, pp 235

    Google Scholar 

  • Bussod GYA, Williams DR (1991) Thermal and kinematic model of the southern Rio Grande rift: inferences from crustal and mantle xenoliths from Kilbourne Hole, New Mexico. Tectonophysics 197:373–389

    Article  Google Scholar 

  • Carlson, RW, Nowell, GM (2001) Olivine-poor sources for mantle-derived magmas: Os and Hf isotopic evidence from potassic magmas of the Colorado Plateau. Geochem Geophys Geosys 2. Paper number 2000GC000128

  • Coltorti M, Bonadiman C, Hinton RW, Siena F, Upton BGJ (1999) Carbonatite metasomatism of the oceanic upper mantle: evidence from clinopyroxenes and glasses in ultramafic xenoliths of Grande Comore, Indian Ocean. J Petrol 40:133–165

    Article  Google Scholar 

  • Dawson JB (1984) Contrasting types of upper mantle metasomatism? In: Kornprobst J (ed) Kimberlites II. Elsevier, Amsterdam, pp 289–294

  • Fedorowich JS, Richards JP, Jain JC, Kerrich R, Fan J (1993) A rapid method for REE and trace-element analysis using laser sampling ICP-MS on direct fusion whole-rock glasses. Chem Geol 106:229–249

    Article  Google Scholar 

  • Frey FA, Green DH (1974) The mineralogy, geochemistry and origin of lherzolite inclusions in Victorian basanites. Geochim Cosmochim Acta 49:2469–2491

    Article  Google Scholar 

  • Frey FA, Prinz M (1978) Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth Planet Sci Lett 38:129–176

    Article  Google Scholar 

  • Gamble JA, McGibbon F, Kyle PR, Menzies MA, Kirsch I (1988) Metasomatised xenoliths from Foster Crater, Antarctica: implications for lithospheric structure and processes beneath the Transantarctic Mountain Front. J Petrol Spec Lithosphere Issue, pp 109–138

  • Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov D (1998) Secular variation in the composition of subcontinental lithospheric mantle. In: Braun J et al (ed) Structure and evolution of the Australian continent. American Geophysical Union, Geodynamics Series 26:1–25

  • Halliday A, Lee D-C, Tommasini S, Davies GR, Paslick CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett 133:379–395

    Article  Google Scholar 

  • Hamilton DL, Bedson P, Esson J (1989) The behavior of trace element in the evolution of carbonatites. In: Bell K (ed) Carbonatites-Genesis and evolution, Unwin Hyman, London, pp 405–427

    Google Scholar 

  • Hofmann AW (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett 90:297–314

    Article  Google Scholar 

  • Johnson KE, Davis AM, Bryndzia LT (1996) Contrasting styles of hydrous metasomatism in the upper mantle: an ion microprobe investigation. Geochim Cosmochim Acta 60:1367–1385

    Article  Google Scholar 

  • Kelemen P, Shimizu N, Dunn T (1993) Relative depletion of niobium in some magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Kil Y (2002) Mantle evolution associated with the Rio Grande rift: Geochemistry and geothermobarometry of upper mantle xenoliths. PhD dissertation, Colorado School of Mines, Golden, pp 160

  • Kil Y, Wendlandt RF (2004) Pressure and temperature evolution of upper mantle under the Rio Grande rift. Contrib Mineral Petrol 148:265–280

    Article  Google Scholar 

  • Kyser TK, Rison W (1982) Systematics of rare gas isotopes in basic lavas and ultramafic xenoliths. J Geophys Res 87:5611–5630

    Google Scholar 

  • Leeman WP (1982), Tectonic and magmatic significance of strontium isotopic variations in Cenozoic volcanic rocks from the western Unites States. Geol Soc Am Bull 93:487–503

    Article  Google Scholar 

  • Lichte FE (1995) Determination of elemental content of rocks by laser ablation inductively coupled plasma mass spectrometry. Anal Chem 67:2479–2485

    Article  Google Scholar 

  • Maalöe S, Aoki K (1977) The major element composition of upper mantle estimated from the composition of lherzolites. Contrib Mineral Petrol 63:161–173

    Article  Google Scholar 

  • Mattery DP, Menzies M, Pillinger CT (1985) Carbon isotopes in lithosphere peridotites and pyroxenites. Terra Cognita 5:147

    Google Scholar 

  • McKenzie D (1985) The extraction of magma from the crust and mantle. Earth Planet Sci Lett 74:81–91

    Article  Google Scholar 

  • McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091

    Google Scholar 

  • McMillan NJ, Dickin AP, Haag D (2000) Evolution of magma source regions in the Rio Grande rift, southern New Mexico. Geol Soc Am Bull 112:1582–1593

    Article  Google Scholar 

  • Menzies M, Kempton P, Dungan M (1985) Interaction of continental lithosphere and asthenospheric melts below the Geronimo volcanic field, Arizona, USA. J Petrol 26:663–693

    Google Scholar 

  • Menzies MA, Hawkesworth CJ (1987) Mantle metasomatism. Academic, London, pp 472

    Google Scholar 

  • Menzies MA, Arculus RJ, Best MG, Bergman SC, Ehrenberg SN, Irving AJ, Roden MF, Schulze DJ (1987) A record of subduction processes and within-plate volcanism in lithospheric xenoliths of the southwestern USA. In: Nixon PH (ed) Mantle xenoliths, Wiley, New York, pp 59–74

    Google Scholar 

  • Nagasawa H, Schreiber HD, Morris RV (1980) Experimental mineral/liquid partition coefficients of rare earth elements (REE), Sc and Sr for perovskite, spinel and melilite. Earth Planet Sci Lett 46:431–437

    Article  Google Scholar 

  • Nicholls IA (1974) A direct fusion method of preparing silicate rock glasses for energy dispersive electron microprobe analysis. Chem Geol 14:151–157

    Article  Google Scholar 

  • Nicholls IA, Harris KL (1980) Experimental rare earth element partition coefficients for garnet, clinopyroxene and amphibole coexisting with andesitic and basaltic liquids. Geochim Cosmochim Acta 44:287–308

    Article  Google Scholar 

  • Nixon PH (1987) Mantle xenoliths. Wiley, New York, pp 844

    Google Scholar 

  • Norman MD (1998) Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia. Contrib Mineral Petrol 130:240–255

    Article  Google Scholar 

  • O’Reilly SY, Griffin WL (1988) Mantle metasomatism beneath western Victoria, Autralia: I. Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta 52:433–448

    Article  Google Scholar 

  • Perry FV, Baldridge WS, DePaolo DJ (1987) Role of asthenosphere and lithosphere in the genesis of late Cenozoic basaltic rocks from the Rio Grande rift and adjacent regions of the southwestern United States. J Geophys Res 92:9131–9213

    Google Scholar 

  • Pollack HN, Chapman DS (1977) On the regional variation of heat flow, geotherms and lithospheric thickness. Tectonophysics 38:279–296

    Article  Google Scholar 

  • Ridley WI, Lichte FE (1998) Major, trace, and ultratrace element analysis by laser ablation ICP-MS. Rev Econ Geol 7:199–215

    Google Scholar 

  • Roden MF, Murthy VR (1985) Mantle metasomatism. Ann Rev Earth Planet Sci 13:269–296

    Article  Google Scholar 

  • Roden MF, Shimizu N (1993) Ion microprobe analyses bearing on the composition of the upper mantle beneath the Basin and Range and Colorado Plateau provinces. J Geophys Res 98:14091–14108

    Article  Google Scholar 

  • Roden MF, Irving AJ, Murthy VR (1988) Isotopic and trace element composition of the upper mantle beneath a young continental rift: results from Kilbourne Hole, New Mexico. Geochim Cosmochim Acta 52:461–473

    Article  Google Scholar 

  • Sato K, Katsura T, Ito E (1996) Phase relation of phlogopite with and without enstatite up to 8 Gpa: implication to potassic magmatism and mantle metasomatism. Tech Rep of ISEI, Ser A 65:8

    Google Scholar 

  • Sengor AHC, Burke K (1978) Relative timing of rifting and volcanism in earth and its tectonic implications. Geophs Res Lett 5:419–421

    Google Scholar 

  • Solomon M (1963) Counting and sampling errors in modal analysis by point counter. J Petrol 4:367–382

    Google Scholar 

  • Stosch HG (1982) Rare earth element partitioning between minerals from anhydrous spinel peridotite xenoliths. Geochim Cosmochim Acta 46:793–811

    Article  Google Scholar 

  • Stix J, Gauthier G, Ludden JN (1995) A critical look at quantitative laser-ablation ICP-MS analysis of natural and synthetic glasses. Can Mineral 33:435–444

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins. Geol Soc London Spec Pub 42:313–345

  • Vaniman D, Laughlin AW, Gladney ES (1985) Navajo minettes in the Cerros de las Mujeres, New Mexico. Earth Planet Sci Lett 74:69–80

    Article  Google Scholar 

  • Warren RG (1978) Characterization of the lower crust-upper mantle of the Engle basin, Rio Grande rift, from a petrochemical and field geologic study of basalts and their inclusions. MS thesis. University of New Mexico, Albuquerque, pp156

  • Warren RG, Kudo AM, Keil K (1979) Geochemistry of lithic and single-crystal inclusions in basalt and a characterization of the upper mantle-lower crust in the Engle basin, Rio Grande rift, New Mexico. In: Riecker RE (ed) Rio Grande rift: tectonics and magmatism. American Geophysical Union Special Publication, Washington, pp 393–415

  • Wendlandt RF, Harrision WJ (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: results and implications for the formation of light rare earth-enriched rocks. Contrib Mineral Petrol 69:409–419

    Article  Google Scholar 

  • Wendlandt RF, Eggler DH (1980) The origins of potassic magmas: 2. stability of phlogopite in natural spinel lherzolite and in the system KAlSiO4–MgO–SiO2–H2O at high pressures and high temperatures. Am J Sci 280:421–458

    Article  Google Scholar 

  • Wendlandt RF, Altherr R, Neumann E-R, Baldridge WS (1995) Petrology, geochemistry, isotopes. In: Olsen KH (ed) Continental rifts: evolution, structure, tectonics. Elsevier, Amsterdam, pp 47–60

    Google Scholar 

  • Witt-Eickschen G, Seck HA (1987) Temperature of sheared mantle xenoliths from the West Eifel, West Germany: evidence for mantle diapirism beneath the Rhenish massif. J Petrol 28:475–493

    Google Scholar 

  • Wyllie PJ (1977) Mantle fluid composition buffered in peridotite–CO2–H2O by carbonates, amphibole and phlogopite. J Geol 86:687–713

    Article  Google Scholar 

  • Xu X, O’Reilly SY, Griffin WL, Zhou X (2000) Genesis of young lithospheric mantle in southern China: an LAM-ICPMS trace element study. J Petrol 41:111–148

    Article  Google Scholar 

  • Yaxley GM, Crawford AJ, Green DH (1991) Evidence for carbonatite metasomatism in spinel peridotites from western Victoria Australia. Earth Planet Sci Lett 197:305–317

    Article  Google Scholar 

  • Zipfel J, Wörner G (1992) Four-and five-phase peridotites from a continental rift system: evidence for upper mantle uplift and cooling at the Ross Sea margin (Antarctica). Contrib Mineral Petrol 111:24–36

    Article  Google Scholar 

Download references

Acknowledgments

We thank Ian Ridley (US Geological Survey in Denver) for providing access to the LA-ICPMS facility and Charlie Blount for assistance with the Colorado School of Mines microprobe. Critical reviews by Michael Roden, Doug Smith, Craig Simmons, and Greg Holden are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kil.

Additional information

Communicated by T.L. Groove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kil, Y., Wendlandt, R.F. Depleted and enriched mantle processes under the Rio Grande rift: spinel peridotite xenoliths . Contrib Mineral Petrol 154, 135–151 (2007). https://doi.org/10.1007/s00410-007-0183-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0183-y

Keywords

Navigation