Skip to main content
Log in

Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Late Alpine fissures and fractures in amphibolite-facies basement gneisses at Arvigo (Val Calanca, Swiss Alps) show distinct cm-sized reaction selvages parallel to the fracture walls that composed of subgreenschist facies assemblages produced by the interaction of water present in the fracture porosity with the old high-grade gneiss assemblages. The process of selvage or reaction-vein formation occurred in the brittle deformation regime and at temperatures characteristic of, first the prehnite-pumpellyite facies and then later of the zeolite facies. The vein formation occurred during uplift and cooling at very late stages of the Alpine orogeny. The reaction veins are composed of a selvage of altered gneiss on both sides of the central fracture and a central zone with fissure minerals that have been growing in the open fracture pore space. The central zone of the Arvigo veins contains an early assemblage with epidote, prehnite and chlorite and a late succession sequence of various species of zeolite. The veins of the Arvigo quarry are convincing evidence that fracture fluids in gneiss and granite have the potential to precipitate Ca–zeolite. This is an important find because many fluids recovered from deep continental drill holes and from geothermal energy exploration are found to be oversaturated in respect to a number of Ca–zeolite species. Vein formation during late uplift and cooling of the Alps occurred at continuously decreasing T and at hydrostatic pressure: (1) coexisting prehnite/epidote records temperatures of 330–380°C, (2) chlorite formation at temperature of 333 ± 32°C and (3) formation of zeolites <250°C. In the selvages the prime reaction is the replacement of plagioclase by albite along a sharp reaction front that separates the selvage from unaltered gneiss. In addition to albitisation, chloritisation of biotite is the second important reaction in the alteration process. The reactions release components for the formation of Ca–Al silicates. The water–rock interaction is associated with a depletion of Al, Si, Ca, Fe and K in the altered wall rock. The overall reaction is associated with an increase in porosity of up to 14.2 ± 2.2% in the selvage zone (altered wall rock), caused by the volume decrease during albitisation and the removal of biotite. The propagation of the sharp reaction front through the gneiss matrix occurred via a dissolution-reprecipitation mechanism. Zeolite formation is tied to the plagioclase alteration reaction in the rock matrix, which releases components for zeolite formation to a CO2-poor aqueous liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Armbruster T (2000) Cation distribution in Mg, Mn-bearing babingtonite from Arvigo, Val Calanca, Grisons, Switzerland. Schweiz Mineral Petrogr Mitt 80:279–284

    Google Scholar 

  • Armbruster T, Kohler T, Meisel T, Nägler TF, Götzinger MA, Stalder HA (1996) The zeolite, fluorite, quartz assemblage of the fissure at Gibelsbach, Fiesch (Valais, Switzerland): crystal chemistry, REE patterns, and genetic speculations. Schweiz Mineral Petrogr Mitt 76:131–146

    Google Scholar 

  • Armbruster T, Stalder HA, Gnos E, Hofmann BA, Herwegh M (2000) Epitaxy of hedenbergite whiskers on babingtonite in Alpine fissures at Arvigo, Val Calanca, Grisons, Switzerland. Schweiz Mineral Petrogr Mitt 80:285–290

    Google Scholar 

  • Austrheim H (1987) Eclogitization of the lower crustal granulites by fluid migration through shear zones. Earth Planet Sci Lett 81:221–232

    Article  Google Scholar 

  • Berger A, Mercolli I, Engi M (2005) Tectonic and petrographic map of the Central Lepontine Alps, 1:100’000. Schweiz Mineral Petrogr Mitt 85:109–146

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for minerals in the system Na2O–K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2–H2O-CO2. J Petrol 29:445–522

    Google Scholar 

  • Bevins RE, Rowbotham G, Robinson D (1991) Zeolite to prehnite-pumpellyite facies metamorphism of the late Proterozoic Zig-Zag Dal Basalt Formation, eastern North Greenland. Lithos 27:155–165

    Article  Google Scholar 

  • Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calcsilicate mineralization in active geothermal systems. Econ Geol 79:671–695

    Article  Google Scholar 

  • Bons PD (2001) The formation of large quartz veins by rapid ascent of fluid in mobile hydrofractures. Tectonophysics 336:1–17

    Article  Google Scholar 

  • Brughera F (1984) Aquamarin aus dem Steinbruch von Arvigo (Calancatal). Schweizer Strahler 6:498–501

    Google Scholar 

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin

    Google Scholar 

  • Bucher K, Stober I (2010) Fluids in the upper continental crust. Geofluids 10:241–253

    Google Scholar 

  • Bucher K, Zhu Y, Stober I (2009) Groundwater in fractured crystalline rock, the Clara mine, Black Forest, Germany. Int J Earth Sci 98:1727–1739

    Article  Google Scholar 

  • Bucher-Nurminen K (1982) Mechanism of mineral reactions inferred from textures of impure dolomitic marbles from East Greenland. J Petrol 23:325–343

    Google Scholar 

  • Carmichael DM (1969) On the mechanism of prograde metamorphic reactions in quartz bearing pelitic rocks. Contrib Mineral Petrol 20:244–267

    Article  Google Scholar 

  • Cathelineau M (1988) Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23:471–485

    Article  Google Scholar 

  • Cathelineau M, Nieva D (1985) A chlorite solid solution geothermometer. The Los Azufres (Mexico) geothermal system. Contrib Mineral Petrol 91:235–244

    Article  Google Scholar 

  • Cho M, Liou JG, Maruyama S (1986) Transition from the zeolite to prehnite-pumpellyite facies in the Karmutsen Metabasites, Vancouver Island, British Columbia. J Petrol 27:467–494

    Google Scholar 

  • Cho M, Maruyama S, Liou JG (1987) An experimental investigation of heulandite-laumontite equilibrium at 1000 to 2000 bar Pfluid. Contrib Mineral Petrol 97:43–50

    Article  Google Scholar 

  • Clark C, Schmist Mumm A, Faure K (2005) Timing and nature of fluid flow and alteration during Mesoproterozoic shear zone formation, Olary Domain, South Australia. J Metamorph Geol 23:147–164

    Article  Google Scholar 

  • Coelho J (2006) GEOISO—a WindowsTM program to calculate and plot mass balances and volume changes occurring in a wide variety of geologic processes. Comput Geosci 32:1523–1528

    Article  Google Scholar 

  • Cole DR, Larson PB, Riciputi LR, Mora CI (2004) Oxygen isotope zoning profiles in hydrothermally altered feldspars; estimating the duration of water-rock interaction. Geology 32:29–32

    Article  Google Scholar 

  • Coombs DS, Alberti A, Artioli A, Armbruster T, Colella C, Galli E, Grice JD, Liebau F, Mandarino JA, Minato H, Nickel EH, Passaglia E, Peacor DR, Quartieri S, Rinaldi R, Ross M, Sheppard RA, Tillmanns E, Vezzalini G (1998) Recommended nomenclature for zeolite minerals: report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. Mineral Mag 62:533–571

    Article  Google Scholar 

  • de Capitani C, Brown TH (1987) The computation of chemical equilibrium in complex systems containing non-ideal solutions. Geochim Cosmochim Acta 51:2639–2652

    Article  Google Scholar 

  • De Caritat P, Hutcheon I, Walshe JL (1993) Chlorite geothermometry: a review. Clays and Clay Miner 41:219–239

    Article  Google Scholar 

  • Diegel S, Ghent ED (1994) Fluid-mineral equilibria in prehnite-pumpellyite to greenschist facies metabasites near Flin Flon, Manitoba, Canada: implications for petrogenetic grids. J Metamorph Geol 12:467–477

    Article  Google Scholar 

  • Engi M, Todd CS, Schmatz D (1995) Tertiary metamorphic conditions in the eastern Lepontine Alps. Schweiz Mineral Petrogr Mitt 75:347–369

    Google Scholar 

  • Engvik A, Putnis A, Fitz Gerald JD, Austrheim H (2008) Albitisation of granitoid: the mechanism of plagioclase replacement by albite. Can Mineral 46:1401–1415

    Article  Google Scholar 

  • Faryad SW, Dianiska I (2003) Ti-bearing andradite-prehnite-epidote assemblage from the Malá Fatra granodiorite and tonalite (Western Carpathians). Schweiz Mineral Petrogr Mitt 82:47–56

    Google Scholar 

  • Ferry JM (1979) Reactions mechanism, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from South-central Maine, USA. Contrib Mineral Petrol 68:125–139

    Article  Google Scholar 

  • Freiberger R, Hecht L, Cuney M, Morteani G (2001) Secondary Ca-Al silicates in plutonic rocks: implications for their cooling history. Contrib Mineral Petrol 141:415–429

    Article  Google Scholar 

  • Frey M, de Capitani C, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorph Geol 9:497–509

    Article  Google Scholar 

  • Gianelli G, Mekuria N, Battaglia S, Cheriscla A, Garofalo P, Ruggieri G, Manganelli M, Gebregziabher Z (1998) Water-rock interaction and hydrothermal mineral equilibria in the Tendaho geothermal system. J Volc Geothermal Res 86:253–276

    Article  Google Scholar 

  • Gottardi G (1989) The genesis of zeolites. Eur J Mineral 1:479–487

    Google Scholar 

  • Graeser S, Stalder HA (1976) Mineral-Neufunde aus der Schweiz und angrenzenden Gebieten. Schweizer Strahler 4:158–171

    Google Scholar 

  • Grant JA (1986) The isocon diagram—a simple solution the Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Article  Google Scholar 

  • Hay RL (1966) Zeolites and zeolitic reactions in sedimentary rocks. Geol Soc Amer Special, Paper No 85, pp 1–130

  • Hay RL (1977) Geology of zeolites in sedimentary rocks. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites, Mineralogical Society of America, Short Course Notes, Washington, DC, pp 53–64

  • Hay RL, Sheppard RA (1977) Zeolites in open hydrologic systems. In: Mumpton FA (ed) Mineralogy and geology of natural zeolites. Mineralogical Society of America, Short Course Notes, Washington, DC, pp 93–102

  • Hay RL, Sheppard RA (2001) Occurrences of zeolites in sedimentary rocks. In: Bish DL, Ming DW (eds) Natural zeolites: occurrence, properties; applications, Reviews in Mineralogy & Geochemistry, vol 45. Mineralogical Society of America, Washington, DC, pp 217–234

    Google Scholar 

  • Jenny H, Frischknecht G, Knopp J (1923) Geologie der Adula. Beitr Geol Karte Schweiz. Schweizerische Geologische Kommision, Bern

    Google Scholar 

  • Keller F (1968) Mineralparagenesen und Geologie der Campo Tencia-Pizzo Forno-Gebirgsgruppe. Beitr Geol Karte Schweiz. Schweizerische Geologische Kommision, Bern

    Google Scholar 

  • Köppel V, Grünenfelder M (1975) Concordant U-Pb ages of monazite and xenotime from the Central Alps and the timing of the high temperature Alpine metamorphism, a preliminary report. Schweiz Mineral Petrogr Mitt 55:129–132

    Google Scholar 

  • Kristmannsdóttir H, Tómasson J (1978) Zeolites zones in geothermal areas in Iceland. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurrence Properties use. Pergamon Press, New York, pp 277–284

    Google Scholar 

  • Kuniyoshi S, Liou JG (1976) Contact metamorphism of the Karmutsen Volcanics, Vancouver Islands, British Columbia. J Petrol 17:73–99

    Google Scholar 

  • Lee MR, Thompson P, Poeml P, Parsons L (2003) Peristeritic plagioclase in North Sea hydrocarbon reservoir rocks: Implications for diagenesis, provenance and stratigraphic correlation. Am Mineral 88:866–875

    Google Scholar 

  • Leichmann J, Broska I, Zachovalova K (2003) Low-grade metamorphic alteration of feldspar minerals: a CL study. Terra Nova 15:104–108

    Article  Google Scholar 

  • Liou JG (1971) P-T stabilities of laumontite, wairakite, lawsonite, and related minerals in the system CaAl2Si2O8-SiO2–H2O. J Petrol 12:379–411

    Google Scholar 

  • Liou JG (1979) Zeolite facies metamorphism of basaltic rocks from the East Taiwan Ophiolite. Am Mineral 64:1–14

    Google Scholar 

  • Liou JG (1985) Phase equilibria and mineral parageneses of metabasites in low-grade metamorphism. Mineral Mag 49:321–333

    Article  Google Scholar 

  • Liou JG, Kim HS, Maruyama S (1983) Prehnite-epidote equilibria and their petrologic applications. J Petrol 24:321–342

    Google Scholar 

  • Maeder UK, Berman RG (1991) An equation of state for carbon dioxide to high pressure and temperature. Am Mineral 76:1547–1559

    Google Scholar 

  • Mercolli I, Schenker F, Stalder HA (1984) Geochemie der Veränderungen von Granit durch hydrothermale Lösungen. Schweiz Mineral Petrogr Mitt 64:67–82

    Google Scholar 

  • Mullis J, Dubessy J, Poty B, O’Neil J (1994) Fluid regimes during late stages of a continental collision: physical, chemical and stabel isotope measurements of fluid inclusions in fissure quartz from a geotraverse through the Central Alps, Switzerland. Geochim Cosmochim Acta 58:2239–2267

    Article  Google Scholar 

  • Nagel T, de Capitani C, Frey M (2002) Isograds and P-T evolution in the eastern Lepontine Alps. J Metamorph Geol 20:309–324

    Article  Google Scholar 

  • Neuhoff PS, Fridriksson T, Arnórsson S (1999) Porosity evolution and mineral paragenesis during low-grade metamorphism of basaltic lavas at Teigarhorn, Eastern Iceland. Am J Sci 299:467–501

    Article  Google Scholar 

  • Neuhoff PS, Fridriksson T, Bird DK (2000) Zeolite parageneses in the North Atlantic Igneous Provinces: implications for geotectonics and groundwater quality of basaltic crust. Int Geol Rev 42:15–44

    Article  Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whittemore d (1989) Groundwater chemistry and water-rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Article  Google Scholar 

  • Orvosová M, Majzlan J, Chovan M (1998) Hydrothermal alteration of granitoid rocks and gneisses in the Sb-Au Dúbrava deposit, Western Carpathians. Geol Carp 49:377–387

    Google Scholar 

  • Parneix JC, Petit JC (1991) Hydrothermal alteration of an old geothermal system in the Auriat Granite (Massif Central, France); petrological study and modelling. Chem Geol 89:329–351

    Article  Google Scholar 

  • Parry WT, Downey LM (1982) Geochemistry of hydrothermal chlorite replacing igneous biotite. Clays Clay Miner 30:81–90

    Article  Google Scholar 

  • Passaglia E (1970) The crystal chemistry of chabazite. Am Mineral 55:1278–1301

    Google Scholar 

  • Phillips ER, Rickwood PC (1975) The biotite-prehnite association. Lithos 8:275–281

    Article  Google Scholar 

  • Poty BP, Stalder HA, Weisbrod AM (1974) Fluid inclusions studies in quartz from fissures of Western and Central Alps. Schweiz Mineral Petrogr Mitt 54:717–752

    Google Scholar 

  • Pouchou G, Pichior F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model of “PAP”. In: Heinrich KFJ, Newbiry DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75

    Google Scholar 

  • Purdy JW, Stalder HA (1973) K-Ar ages of fissure minerals from the Swiss Alps. Schweiz Mineral Petrogr Mitt 53:79–98

    Google Scholar 

  • Putnis A, Putnis CV (2007) The mechanism of reequilibration of solids in the presence of a fluid phase. J Solid State Chem 180:1783–1786

    Article  Google Scholar 

  • Ragnarsdottir KV, Walther JV (1985) Experimental determination of corundum solubilities in pure water between 400–700°C and 1–3 kbars. Geochim Cosmochim Acta 49:2109–2115

    Article  Google Scholar 

  • Rahn M, Mullis J, Erdelbrock K, Frey M (1994) Very low-grade metamorphism of the Taveyanne greywacke, Glarus Alps Switzerland. J Metamorph Geol 12:625–641

    Article  Google Scholar 

  • Rose NM, Bird DK (1987) Prehnite-epidote phase relations in the Nordre Aputiteq and Kruuse Fjord Layered Gabbros, East Greenland. J Petrol 28:1193–1218

    Google Scholar 

  • Rose NM, Bird DK, Liou JG (1992) Experimental investigation of mass transfer—albite, Ca-Al-silicates, and aqueous solutions. Am J Sci 292:21–57

    Article  Google Scholar 

  • Ruppe H (1966) Val Calanca—Graubünden. Aufschluss 17:105–109

    Google Scholar 

  • Rütti R, Maxelon M, Mancktelow NS (2005) Structure and kinematics of the northern Simano Nappe, Central Alps, Switzerland. Eclogae Geol Helv 98:63–81

    Article  Google Scholar 

  • Saigal GC, Morad S, Bjørlykke K, Egeberg PK, Aagaard P (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower, Cretaceous, and tertiary clastic reservoir rocks from offshore Norway; I textures and origin. J Sed Petr 58:1003–1013

    Google Scholar 

  • Sandström B, Annersten H, Tullborg E-L (2010) Fracture related hydrothermal alteration of metagranitic rock and associated changes in mineralogy, geochemistry and degree of oxidation: a case study at Forsmark, central Sweden. Int J Earth Sci 99:1–25

    Google Scholar 

  • Schaltegger U, Gebauer D, von Quadt A (2002) The mafic and ultramafic rock association of Loderio-Biasca (lower Pennine nappes, Ticino, Switzerland); Cambrian oceanic magmatism and its bearing on early Paleozoic paleogeography. Chem Geol 186:265–279

    Article  Google Scholar 

  • Seelig U, Bucher K (2010) Halogens in water from the crystalline basement of the Gotthard rail base tunnel (central Alps). Geochim Cosmochim Acta 74:2581–2595

    Article  Google Scholar 

  • Senderov EE (1973) Effect of CO2 on the stability of laumontite. Geochem Int 10:114–139

    Google Scholar 

  • Simonetti A (1971) Le zeoliti a le loro paragenesi nelle fessure delle rocce del canton Ticino, della Val Calanca e della Val Mesolcina. Boll Soc Ticinese Sci Nat 62

  • Spicher A (1980) Tektonische Karte der Schweiz 1:500’000, 2nd edn. Schweizerische Geologische Kommision, Bern

    Google Scholar 

  • Stalder HA (2007) Kluft-Mineralien aus dem Steinbruch von Arvigo im Calancatal. Schweizer Strahler 1:5–7

    Google Scholar 

  • Stalder HA, Wagner A, Graser S, Stuker P (1998) Mineralienlexikon der Schweiz. Wepf Verlag, Basel

    Google Scholar 

  • Steck A (1968) Junge Bruchsysteme in den Zentralalpen. Eclogae Geol Helv 61:387–393

    Google Scholar 

  • Steefel CI (2008) Geochemical kinetics and transport. In: Brantley SL, Kubicki JD, White AF (eds) Kinetics of water-rock interaction. Springer, New York, pp 545–589

    Chapter  Google Scholar 

  • Stober I, Bucher K (1999) Deep groundwater in the crystalline basement of the Black Forest region. Appl Geochem 14:237–254

    Article  Google Scholar 

  • Stober I, Bucher K (2005) The upper continental crust, an aquifer and its fluid: Hydaulic and chemical data from 4 km depth in fractured crystalline basement rocks at the KTB test site. Geofluids 5:8–19

    Article  Google Scholar 

  • Sun C-O, Williams RJ, Sun S-S (1974) Distribution coefficients of Eu and Sr for plagioclase-fluid and clinopyroxene-liquid equilibria in oceanic ridge basalt: an experimental study. Geochim Cosmochim Acta 38:1415–1433

    Article  Google Scholar 

  • Thompson AB (1970) Laumontite equilibria and the zeolite facies. Am J Sci 269:267–275

    Article  Google Scholar 

  • Thompson AB (1971) PCO2 in low-grade metamorphism; zeolite, carbonate, clay mineral, prehnite relations in the system CaO-Al2O3-SiO2-CO2–H2O. Contrib Mineral Petrol 33:145–161

    Article  Google Scholar 

  • Thompson AB (1975) Calc-silicate diffussion zones between marble and pelitic schist. J Petrol 16:314–346

    Google Scholar 

  • Todd CS, Engi M (1997) Metamorphic field gradients in the Central Alps. J Metamorph Geol 15:513–530

    Article  Google Scholar 

  • Tulloch AJ (1979) Secondary Ca-Al silicates as low-grade alteration products of granitoid biotite. Contrib Mineral Petrol 69:105–117

    Article  Google Scholar 

  • Verdes G, Gout R, Castet S (1992) Thermodynamic properties of the aluminate ion and bayrite, boemite, diaspore and gibbsite. Eur J Mineral 4:767–792

    Google Scholar 

  • Vidal O, Parra T, Trotet F (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiment and natural pelitic assemblages in the 100–600°C, 1–5 kbar range. Am J Sci 6:557–592

    Article  Google Scholar 

  • Wagner A (1968) Mineralien aus den Stenbrüchen von Arvigo. Schweizer Strahler 1:128–131

    Google Scholar 

  • Wagner A (1980) Die Mineralien aus den Gesteinsbrüchen von Arvigo im Bild (1 Teil). Mineralienfreund 18:137–141

    Google Scholar 

  • Wagner A (1981) Die Mineralien aus den Gesteinsbrüchen von Arvigo im Bild (2 Teil). Mineralienfreund 19:56–64

    Google Scholar 

  • Wagner A (1983) Die Mineralien aus dem Val Calanca und den Steinbrüchen von Arvigo. Schweizer Strahler 6:336–355

    Google Scholar 

  • Wagner A, Stalder HA, Stuker P, Offermann E (2000a) Arvigo—eine der bekanntesten Mineralfundstellen der Schweiz. Schweizer Strahler 12:41–70

    Google Scholar 

  • Wagner A, Stalder HA, Stuker P, Offermann E (2000b) Arvigo—eine der bekanntesten Mineralfundstellen der Schweiz. Schweizer Strahler 12:118–154

    Google Scholar 

  • Walker GPL (1960) Zeolite zones and dike distribution in relation to the structure of the basalts of Eastern Iceland. J Geol 68:515–528

    Article  Google Scholar 

  • Walker GPL (1963) The Breiddalur central volcano, Eastern Iceland. Quart J Geol Soc Lond 119:29–63

    Article  Google Scholar 

  • Walker FDL, Lee MR, Parsons L (1995) Micropores and micropermeable texture in alkali feldspars; geochemical and geophysical implications. Mineral Mag 59:505–534

    Article  Google Scholar 

  • Weisenberger T, Bucher K (2008) Porosity evolution and mass transfer during low-grade metamorphism in crystalline rocks of the upper continental crust. In: 33rd IGC International Geological Congress, Oslo MPN03710L

  • Weisenberger T, Bucher K (2010) Zeolite in fissure of granites and gneisses of the Central Alps. J Metam Geol 28:825–847

    Article  Google Scholar 

  • Weiß S, Forster O (1997) Arvigo, Val Calanca: Kluftminerale aus dem Süden Graubündens. Lapis 6:13–42

    Google Scholar 

  • Wenk E (1955) Eine Strukturkarte der Tessineralpen. Schweiz Mineral Petrogr Mitt 35:311–319

    Google Scholar 

  • Yardley WD, Lloyd GE (1995) Why metasomatic fronts are really metasomatic sides. Geology 23:53–56

    Article  Google Scholar 

  • Zen E (1961) The zeolite facies: an interpretation. Am J Sci 259:401–409

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Giovanni and Alfredo Polti for permission to do field work in the active quarry. Special thanks go to the technicians and staff of the Institute of Geosciences, Mineralogy—Geochemistry, University of Freiburg and particularly H. Müller-Sigmund for her useful advise during EMP analyses and her patience with us at the electron microprobe. A. Leemann from the Swiss Federal Laboratories for Materials Testing and Research for impregnation of rock samples. We thank J. Ferry, L. Machiels and an anonymous reviewer for their very detailed and constructive comments that have greatly improved our paper and J. Hoefs for his editorial efforts and the editorial handling of the paper. A special thanks deserved to the Friedrich Rinne foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Weisenberger.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1:

(DOC 203 kb)

Electronic supplementary material 2:

X-ray images (TS 12.1) showing a relict plagioclase grain surrounded by albite, showing increased porosity around plagioclase. (a) Ca element map. Plagioclase shows Ca enrichment relative to the core. (b) K element map. (c) Na element map. Same colour codes are used as in figure 6 (EPS 7989 kb)

Electronic supplementary material 3:

(DOC 124 kb)

Electronic supplementary material 4:

(DOC 93 kb)

Electronic supplementary material 5:

(DOC 67 kb)

Electronic supplementary material 6:

X-ray images showing element distribution in a prehnite aggregate indicating a Fe ⇔ Al substitution during growth. (a) Fe element map showing an iron-enrichment in the core. (b) Al element map showing an Al-depletion in the core. The same colour code are used as in figure 6 (EPS 4755 kb)

Electronic supplementary material 7:

(DOC 59 kb)

Electronic supplementary material 8:

(DOC 89 kb)

Electronic supplementary material 9:

(a) Extra-framework cation (Ca+Sr+Mg-Na-K) distribution of zeolites. (b) R2+ - R+ - Si compositional diagram of zeolites. Si/Al ratio increases in chronologic order. Dashed area marks the chemical composition of zeolites found in granites and gneisses in the Swiss Alps (Weisenberger and Bucher 2010) (EPS 428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisenberger, T., Bucher, K. Mass transfer and porosity evolution during low temperature water–rock interaction in gneisses of the simano nappe: Arvigo, Val Calanca, Swiss Alps. Contrib Mineral Petrol 162, 61–81 (2011). https://doi.org/10.1007/s00410-010-0583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-010-0583-2

Keywords

Navigation