Skip to main content
Log in

A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-precision Pb isotope data and Sr–Nd–Hf isotope data are presented together with major and trace element data for samples spanning the 4.6 Ma history of volcanism at Santiago, in the southern Cape Verde islands. Pb isotope data confirm the positive Δ8/4 signature of the southern islands indicating that the north–south compositional heterogeneity in the Cape Verde archipelago has persisted for at least 4.6 Ma. The Santiago volcanics show distinct compositional differences between the old, intermediate and young volcanics, and suggest greater involvement of an enriched mantle (EM1)-like source over time. Isotopic variations in the Santiago volcanics indicate convergence towards a homogeneous EM1-like end-member and distinct temporal variations in the FOZO-like end-member. Santiago and Santo Antão (a northern island, Holm et al. 2006), show a simultaneous decrease in 208Pb/204Pb of the high 206Pb/204Pb FOZO-like source with time. Such systematic archipelago-wide variations in the FOZO-like component suggest that this component is more likely to be present as a coherent package of recycled ocean crust rather than as multiple small heterogeneities dispersed in the upwelling mantle. The temporal variations in 208Pb/204Pb reflect minor lateral variations in Th/U of this recycled ocean crust package entering the melting zone beneath the islands. The location of the EM1-like component is more equivocal. A shallow lithospheric location is possible, but this would require a coincidence between spatial compositional variations in the lithosphere (EM1 is spatially restricted to the southern islands) and flow lines in the upwelling mantle revealed by seismic anisotropy. Therefore, we favour a deeper asthenospheric mantle source for the EM1-like source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abouchami W, Galer SJG, Koschinsky A (1999) Pb and Nd isotopes in NE Atlantic Fe-Mn crusts: proxies for trace metal paleosources and paleocean circulation. Geochim Cosmochim Acta 63:1489–1505

    Google Scholar 

  • Abouchami W, Hofmann AW, Galer SJG, Frey FA, Eisele J, Feigenson M (2005) Lead isotopes reveal bilateral asymmetry and vertical discontinuity in the Hawaiian mantle plume. Nature 434:851–856

    Google Scholar 

  • Ali MY, Watts AB (2003) A seismic reflection profile study of lithospheric flexure in the vicinity of the Cape Verde Islands. J Geophys Res 108:2239–2263

    Google Scholar 

  • Baker J, Peate DW, Waight T, Meyzen C (2004) Pb isotopic analysis of standards and samples using a 207Pb-204Pb double spike and thallium to correct for mass bias with a double focusing MC-ICP-MS. Chem Geol 211:275–303

    Google Scholar 

  • Ban M, Witt-Eickschen G, Klein M, Seck HA (2005) The origin of glasses in hydrous mantle xenoliths from the West Eifel, Germany: incongruent break down of amphibole. Contrib Mineral Petrol 148:511–523

    Google Scholar 

  • Barker AK, Holm PM, Peate DW, Baker JA (2009) Geochemical stratigraphy of submarine lavas (3–5 Ma) from the Flamengos Valley, Santiago, Cape Verde. J Petrol 50:169–193. doi:10.1093/petrology/egn081

    Google Scholar 

  • Barling J, Goldstein SL (1990) Extreme isotopic variations in Heard Island lavas and the nature of mantle reservoirs. Nature 348:59–62. doi:10.1038/348059a0

    Google Scholar 

  • Barling J, Goldstein SL, Nicholls IA (1994) Geochemistry of Heard Island (southern Indian Ocean): characterization of an enriched mantle component and implications for enrichment of the sub-Indian mantle. J Petrol 35:1017–1053

    Google Scholar 

  • Beattie P (1994) Systematics and energetics of trace-element partitioning between olivine and silicate melts: implications for the nature of mineral/melt partitioning. Chem Geol 117:57–71. doi:10.1016/0009-2541(94)90121-X

    Google Scholar 

  • Bebiano JB (1932) A geologia do arquipelago de Capo Verde. Commun Serv Geol Port 18:276

    Google Scholar 

  • Beyer EE, Griffin WL, O’Reilly SY (2006) Transformation of Archaean mantle lithosphere by refertilization: evidence from exposed peridotites in the western gneiss region, Norway. J Petrol 47:1611–1636

    Google Scholar 

  • Bizzarro M, Baker J, Ulfbeck D (2003) A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by MC-ICP-MS. Geostand Geoanal Res 27:133–145

    Google Scholar 

  • Bonadiman C, Beccaluva L, Coltorti M, Siens F (2005) Kimberlite-like metasomatism and ‘Garnet signature’ in spinel-peridotite xenoliths from Sal, Cape Verde: Relics of a subcontinental mantle domain within the Atlantic oceanic lithosphere. J Petrol 46:2465–2493

    Google Scholar 

  • Bonadiman C, Coltorti M, Siena F, O’Reilly SY, Griffin WL, Pearson NJ (2006) Archean to proterozoic depletion in Cape Verde lithospheric mantle. Geochim Cosmochim Acta 70(18 Suppl):A58. doi:10.1016/j.gca.2006.06.221

  • Chauvel C, Blichert-Toft J (2001) A hafnium isotope and trace element perspective on melting of the depleted mantle. Earth Planet Sci Lett 190:137–151

    Google Scholar 

  • Chauvel C, McDonough WF, Guille G, Maury RC, Duncan RA (1997) Contrasting old and young volcanism in Rurutu Island, Austral chain. Chem Geol 139:125–143

    Google Scholar 

  • Class C, Goldstein SL (1997) Plume–lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet Sci Lett 150:245–260

    Google Scholar 

  • Class C, Goldstein SL, Altherr R, Bachèlery P (1998) The process of plume–lithosphere interactions in the ocean basins-the case of Grande Comore. J Petrol 39:881–903

    Google Scholar 

  • Class C, Goldstein SL, Shirey SB (2009) Osmium isotopes in Grande Comore lavas: a new extreme among a spectrum of EM-type mantle endmembers. Earth Planet Sci Lett 284:219–227

    Google Scholar 

  • Cliff RA, Baker PE, Mateer NJ (1991) Geochemistry of Inaccessible Island volcanics. Chem Geol 92:251–260

    Google Scholar 

  • Courtney RC, White RS (1986) Anomalous heat-flow and geoid across the Cape Verde Rise: evidence for dynamic support from a thermal plume in the mantle. Geophys J R Astronom Soc 87:815–867

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Stalker K (2006) Immiscible transition from carbonate-rich to silicate-rich melts in the 3 GPa melting interval of eclogite + CO2 and genesis of silica-undersaturated ocean island lavas. J Petrol 47:647–671

    Google Scholar 

  • Dasgupta R, Hirschmann MM, Smith ND (2007) Partial melting experiments of peridotite + CO2 and genesis of alkalic ocean island basalts. J Petrol 48:2093–2124

    Google Scholar 

  • Davies GR, Norry MJ, Gerlach DC, Cliff RA (1989) A combined chemical and Pb–Sr–Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geological Society of London, special publication, pp 231–255

  • Dosso L, Hanan BB, Bougault H, Schilling JG, Joron JL (1991) Sr–Nd–Pb geochemical morphology between 10° and 17°N on the Mid-Atlatic Ridge: a new MORB isotope signature. Earth Planet Sci Lett 106:29–43

    Google Scholar 

  • Dosso L, Bougault H, Joron JL (1993) Geochemical morphology of the North Mid-Atlantic Ridge, 10°–24°N: Trace element-isotope complementary. Earth Planet Sci Lett 120:443–462

    Google Scholar 

  • Dosso L, Bougault H, Langmuir C, Bollinger C, Bonnier O, Etoubleau J (1999) The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31°–41°N). Earth Planet Sci Lett 170:269–286

    Google Scholar 

  • Doucelance R, Escrig S, Moriera M, Gariepy C, Kurz M (2003) Pb–Sr–He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochim Cosmochim Acta 67:3717–3733

    Google Scholar 

  • Douglass J, Schilling JG, Fontignie D (1999) Plume–ridge interactions of the discovery and Shona mantle plumes with the southern Mid-Atlantic Ridge (40°–55°S). J Geophys Res 104:2941–2962

    Google Scholar 

  • Dunn T (1987) Partitioning of Hf, Lu, Ti, and Mn between olivine, clinopyroxene and basaltic liquid. Contrib Mineral Petrol 96:476–484

    Google Scholar 

  • Dupuy C, Barsczus HG, Dostal J, Vidal P, Liotard JM (1989) Subducted and recycled lithosphere as the mantle source of ocean island basalts from southern Polynesia, Central Pacific. Chem Geol 77:1–18

    Google Scholar 

  • Dupuy C, Vidal P, Maury R, Guille G (1993) Basalts from Mururoa, Fangataufa and Gambier islands (French Polynesia): geochemical dependence on the age of the lithosphere. Earth Planet Sci Lett 117:89–100

    Google Scholar 

  • Eisele J, Sharma M, Galer SJG, Blichert-Toft J, Devey CW, Hofmann AW (2002) The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett 196:197–212

    Google Scholar 

  • Eisele J, Abouchami W, Galer SJG, Hofmann AW (2003) The 320 kyr Pb isotope evolution of Mauna Kea lavas recorded in the HSDP-2 drill core. Geochem Geophys Geosyst 4:8710. doi:10.1029/2002GC000339

    Google Scholar 

  • Escrig S, Doucelance R, Moreira M, Allégre C (2005) Os isotope systematics in Fogo Island: evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem Geol 219:93–113

    Google Scholar 

  • Evans L, Downes H, Wall F, Day S (2004) Petrology and geochemistry of mantle xenoliths from Santiago, Cape Verde Islands. Geochim Cosmochim Acta 68(11 suppl 1):A716

    Google Scholar 

  • Farnetani CG, Samuel H (2005) Beyond the thermal plume paradigm. Geophys Res Lett 32:L07311. doi:10.1029/2005GL022360

    Google Scholar 

  • Fontignie D, Schilling G (1996) Mantle heterogeneities beneath the South Atlantic: a Nd–Sr–Pb isotope study along the mid-Atlantic Ridge (3°S–46°S). Earth Planet Sci Lett 142:209–221

    Google Scholar 

  • Frey FA, Walker N, Stakes D, Hart SR, Nielsen R (1993) Geochemical characteristics of basaltic glasses from the AMAR and FAMOUS axial valleys, mid-Atlantic ridge (36°–37°N): petrogenetic implications. Earth Planet Sci Lett 115:117–136

    Google Scholar 

  • Frey FA, Weis D, Yang HJ, Nicolaysen KE, Leyrit H, Giret A (2000) Temporal geochemical trends in Kerguelen Archipelago basalts: evidence for decreasing magma supply from the Kerguelen plume. Chem Geol 164:61–80

    Google Scholar 

  • Gautier I, Giret A, Vidal P, Di Donato G, Weis D (1990) Petrology and geochemistry of Kerguelen basalts (south Indian Ocean): evolution of an hotspot from a ridge to an intraplate position. Earth Planet Sci Lett 100:59–76

    Google Scholar 

  • Geist DJ, White WM, McBirney AR (1988) Plume–asthenosphere mixing beneath the Galapagos Archipelago. Nature 333:657–660

    Google Scholar 

  • Geldmacher J, Hoernle K, Klügel A, van den Bogaard P, Bindeman I (2008) Geochemistry of a new enriched mantle type locality in the northern hemisphere: implications for the origin of the EM-1 source. Earth Planet Sci Lett 265:167–182

    Google Scholar 

  • Gerlach DC, Cliff RA, Davies GR, Norry M, Hodgson N (1988) Magma sources of the Cape Verdes archipelago: isotopic and trace element constraints. Geochim Cosmochim Acta 52:2979–2992

    Google Scholar 

  • Gibson SA, Thompson RN, Day JA, Humphris SE, Dickin AP (2005) Melt-generation processes associated with the Tristan mantle plume: constraints on the origin of EM-1. Earth Planet Sci Lett 237:744–767

    Google Scholar 

  • Grousset FE, Parra M, Bory A, Martinez P, Bertrand P, Shimmield G, Ellam RM (1998) Saharan wind regimes traced by the Sr–Nd isotopic composition of subtropical Atlantic sediments: last glacial maximum vs. today. Quat Sci Rev 17:395–409

    Google Scholar 

  • Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995

    Google Scholar 

  • Hanan BB, Kingsley RH, Schilling JG (1986) Pb isotope evidence in the South Atlantic for migrating ridge–hotspot interactions. Nature 322:137–144

    Google Scholar 

  • Hart SR (1984) A large-scale isotopic anomaly in the southern hemisphere mantle. Nature 309:753–757

    Google Scholar 

  • Hart SR, Hauri EH, Oschmann LA, Whitehead JA (1992) Mantle plumes and entrainment—isotopic evidence. Science 256:517–520

    Google Scholar 

  • Hellebrand E, Snow JE, Hoppe P, Hofmann AW (2002) Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the central Indian ridge. J Petrol 43:2305–2338

    Google Scholar 

  • Hirose K, Kushiro I (1993) Partial melting of dry peridotites at high pressure; determination of composition of melts segregated from peridotite using aggregates of diamond. Earth Planet Sci Lett 114:447–489

    Google Scholar 

  • Hirschmann MM, Kogiso T, Baker MB, Stolper EM (2003) Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31:481–484

    Google Scholar 

  • Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Google Scholar 

  • Hoernle K, Tilton G, Schminke H-U (1991) Sr–Nd–Pb isotopic evolution of Gran Canaria: evidence for shallow enriched mantle beneath the Canary Islands. Earth Planet Sci Lett 106:44–63

    Google Scholar 

  • Hoernle K, Werner R, Morgan JP, Garbe-Schönberg D, Bryce J, Mrazek J (2000) Existence of complex spatial zonation in the Galápagos plume for at least 14 m.y. Geology 28:435–438

    Google Scholar 

  • Hoernle K, Tilton G, Le Bas MJ, Duggan S, Garbe-Schönberg D (2002) Geochemistry of oceanic carbonatites compared with continental carbonatite: mantle recycling of oceanic crustal carbonate. Contrib Mineral Petrol 142:520–542

    Google Scholar 

  • Holm PM, Wilson JR, Christensen BP, Hansen L, Hansen SL, Hein KH, Mortensen AK, Pedersen R, Plesner S, Runge MK (2006) Sampling the Cape Verde mantle plume: evolution of melt compositions on Santo Antão, Cape Verde Islands. J Petrol 47:145–189

    Google Scholar 

  • Holm PM, Grandvuinet T, Friis J, Wilson JR, Barker AK, Plesner S (2008) An 40Ar–39Ar study of the Cape Verde hotspot: temporal evolution in a semi-stationary plate environment. J Geophys Res, B08201. doi:10.1029/2007JB005339

  • Ito E, White WM, Gopel C (1987) The O, Sr, Nd and Pb isotope geochemistry of MORB. Chem Geol 62:157–176

    Google Scholar 

  • Ito G, Shen Y, Hirth G, Wolfe CJ (1999) Mantle flow, melting and dehydration of the Iceland mantle plume. Earth Planet Sci Lett 165:81–96

    Google Scholar 

  • Janney PE, Castillo PR (2001) Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean. Earth Planet Sci Lett 192:291–302

    Google Scholar 

  • Jebens M (2004) A geochemical and petrological investigation of Santiago, Cape Verde Islands (in Danish). Unpublished M.Sc. thesis. Geological Institute, University of Copenhagen, pp 1–113

  • Jørgensen JØ (2003) A geochemical study of carbonatites from the Cape Verde Islands, Basaltic rocks from São Vicente and fenites from Brava. Unpublished Ph.D. thesis. Geological Institute, University of Copenhagen, p 135

  • Kellogg LH, Turcotte DL (1990) Mixing and the distribution of heterogeneities in a chaotically convecting mantle. J Geophys Res 95(B1):421–432

    Google Scholar 

  • Kogiso T, Hirschmann MM, Reiners PW (2004) Length scales of mantle heterogeneities and their relationship to ocean island basalt geochemistry. Geochim Cosmochim Acta 68:345–360

    Google Scholar 

  • Kokfelt TF, Holm PM, Hawkesworth CJ, Peate DW (1998) A lithospheric mantle source for the Cape Verde Island magmatism: trace element and isotopic evidence from the Island of Fogo. Mineral Mag 62A:801–802

    Google Scholar 

  • Kystol J, Larsen LM (1999) Analytical procedures in the rock geochemical laboratory of the Geological Survey of Denmark and Greenland. Geol Greenland Surv Bull 184:59–62

    Google Scholar 

  • Lassiter JC, Blichert-Toft J, Hauri EH, Batsczus HG (2003) Isotope and trace element variations in lavas from Raivavae and Rapa, Cook-Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-late volcanism in French Polynesia. Chem Geol 202:115–138. doi:10.1016/j.chemgeo.2003.08.002

    Google Scholar 

  • LaTourette T, Hervig RL, Holloway JR (1995) Trace element partitioning between amphibole, phlogopite and basanite melt. Earth Planet Sci Lett 135:13–30

    Google Scholar 

  • Le Roex AP, Cliff RA, Adair BJI (1990) Tristan-da-Cunha, South-Atlantic—geochemistry and petrogenesis of a Basanite Phonolite Lava series. J Petrol 31:779–812

    Google Scholar 

  • Lodge A, Helffrich G (2006) Depleted swell root beneath the Cape Verde Islands. Geology 34:449–452

    Google Scholar 

  • Luais B, Telouk P, Albaréde F (1997) Precise and accurate neodymium isotopic measurements by plasma-source mass spectrometry. Geochim Cosmochim Acta 61:4847–4854

    Google Scholar 

  • Martins S, Mata J, Munhá J, Mendes MH, Maerschalk C, Caldeira R, Mattielli N (2009) Chemical and mineralogical evidence of the occurrence of mantle metasomatism by carbonate-rich melts in an oceanic environment (Santiago Island, Cape Verde). Mineral Petrol. doi:10.1007/s00710-009-0078-x

  • Médard E, Schmidt MW, Schiano P, ottolini L (2006) Melting of amphibole-bearing wehrlites: an experimental study on the origin of ultra-calcic nepheline-normative melts. J Petrol 47:481–504

    Google Scholar 

  • Mertz DF, Haase KM (1997) The radiogenic isotope composition of the high-latitude North Atlantic mantle. Geology 25:411–414

    Google Scholar 

  • Mertz DF, Devey CW, Todt W, Stoffers P, Hofmann AW (1991) Sr–Nd–Pb isotope evidence against plume asthenosphere mixing north of Iceland. Earth Planet Sci Lett 107:243–255

    Google Scholar 

  • Millet M-A, Doucelance R, Schiano P, David K, Bosq C (2008) Mantle plume heterogeneity versus shallow-level interactions: a case study, the São Nicolau Island, Cape Verde archipelago. J Volcanol Geotherm Res 176:265–276. doi:10.1016/j.jvolgeores.2008.04.003

    Google Scholar 

  • Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Hung S-H (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 30:338–343

    Google Scholar 

  • Nakamura Y, Tatsumoto M (1988) Pb, Nd, Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes. Geochim Cosmochim Acta 52:2909–2924

    Google Scholar 

  • Newsom HE, White WM, Jochum KP, Hofmann AW (1986) Siderophile and chalcophile element abundances in Oceanic Basalts, Pb-isotope evolution and growth of the earths core. Earth Planet Sci Lett 80:299–313

    Google Scholar 

  • Ogg JG (1995) Magnetic polarity time scale of the phanerozoic. In: Ahrens TJ (ed) Global earth physics: a handbook of physical constants, vol 1. AGU Ref. Shelf, Washington, DC, pp 240–270

  • Parsons I, McKenzie D (1978) Mantle convection and thermal structure of plates. J Geophys Res 83:4485–4496

    Google Scholar 

  • Perk NW, Coogan LA, Karson JA, Klein EM, Hanna HD (2007) Petrology and geochemistry of primitive lower oceanic crust from Pito Deep: implications for the accretion of the lower crust at the south East Pacific Rise. Contrib Mineral Petrol 154:575–590. doi:10.1007/s00410-007-0210-z

    Google Scholar 

  • Petersen GMJ (2002) A petrological and geochemical investigation of Santiago, Cape Verde (in Danish). Unpublished M.Sc. thesis. Geological Institute, University of Copenhagen, p 169

  • Pim J, Peirce C, Watts AB, Grevemeyer L, Krabbenhoeft A (2008) Crustal structure and origin of the Cape Verde Rise. Earth Planet Sci Lett 272:422–428

    Google Scholar 

  • Pollitz FF (1991) Two-stage model of African absolute motion during the last 30 million years. Tectonophysics 194:91–106

    Google Scholar 

  • Pollock MA, Klein EM, Karson JA, Coleman DS (2009) Compositions of dikes and lavas from the Pito Deep Rift: implications for crustal accretion at superfast spreading centers. J Geophys Res B03207. doi:10.1029/2007JB005436

  • Prytulak J, Elliott T (2007) TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett 263:388–403

    Google Scholar 

  • Regelous M, Hofmann AW, Abouchami W, Galer SJG (2003) Geochemistry of lavas from the Emperor Seamounts, and the geochemical evolution of Hawaiian magmatism from 85 to 42 Ma. J Petrol 44:113–140

    Google Scholar 

  • Reisberg L, Zindler A, Marcantonio F, White W, Wyman D, Weaver B (1993) Os isotope systematics in Ocean Island basalts. Earth Planet Sci Lett 120:149–167

    Google Scholar 

  • Richardson SH, Erlank AJ, Duncan AR, Reid DL (1982a) Correlated Nd, Sr, and Pb isotopic variation in Walvis Ridge basalts and implications for the evolution of their mantle source. Earth Planet Sci Lett 59:327–342

    Google Scholar 

  • Richardson SH, Erlank AJ, Duncan AR, Reid DL (1982b) Major and trace elements and Nd and Sr isotope geochemistry of basalts from the Deep Sea Drilling Project Leg 74 Walvis Ridge transect. In: Moore TC, Rabinowitz, PD (eds) Reports of the Deep Sea Drilling Project 74. US Government Printing Office

  • Rudnick RL, Gao S (2003) Composition of the continental crust. Treatise Geochem 3:1–64

    Google Scholar 

  • Salters VJM (1996) The generation of mid-ocean ridge basalts from the Hf and Nd isotope perspective. Earth Plan Sci Lett 141:109–123

    Google Scholar 

  • Salters VJM, Hart SR (1991) The mantle sources of ocean ridges, islands and arcs—the Hf-isotope connection. Earth Planet Sci Lett 104:364–380

    Google Scholar 

  • Salters VJM, White WM (1998) Hf isotope constraints on mantle evolution. Chem Geol 145:447–460

    Google Scholar 

  • Schiano P, Burton KW, Dupré B, Birk JL, Guille G, Allègre CJ (2001) Correlated Os–Pb–Nd–Sr isotopes in the Austral-Cook chain basalts: the nature of mantle components in plume sources. Earth Planet Sci Lett 186:527–527

    Google Scholar 

  • Schilling JG, Hanan BB, McCully B, Kingsley RH, Fontignie D (1994) Influence of the Sierra Leone mantle plume on the equatorial mid-Atlantic Ridge: a Nd–Sr–Pb isotopic perspective. J Geophys Res 99:12005–12028

    Google Scholar 

  • Schilling JG, Kingsley R, Fontignie D, Poreda R, Xue S (1999) Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: a He–Pb–Nd–Sr isotope tracer study of basalts from the Kolbeinsey, Mohns, and Knipovich Ridges. J Geophys Res 104:10543–10569

    Google Scholar 

  • Serralheiro A (1976) A geologia da Ilha de Santiago (Cabo Verde), vol 14. Boletim do museu e laboratório mineralógico e geológico da Faculdade de Ciências, pp 157–369

  • Shaw CSJ, Heidelbach F, Dingwell DB (2006) The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism’ by the host lava. Contrib Mineral Petrol 151:681–697

    Google Scholar 

  • Shirey SB, Bender JF, Langmuir CH (1987) Three-component isotopic heterogeneity near the Oceanographer Transform, mid-Atlantic Ridge. Nature 325:217–223

    Google Scholar 

  • Storey M, Saunders AD, Tarney J, Leat P, Thirlwall MF, Thompson RN, Menzies MA, Marriner GF (1988) Geochemical evidence for plume–mantle interactions beneath Kergeulen and Heard Islands, Indian Ocean. Nature 336:371–374

    Google Scholar 

  • Stracke A, Bourdon B (2009) The importance of melt extraction for tracing mantle heterogeneity. Geochim Cosmochim Acta 73:218–238

    Google Scholar 

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst Q05007. doi:10.1029/2004GC000824

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society Special Publication, pp 313–345

  • Tatsumi Y (2000) Continental crust formation by crustal delamination in subduction zones and complementary accumulation of the enriched mantle I component in the mantle. Geochem Geophys Geosyst. doi: 10.1029/2000GC000094

  • Thirlwall MF, Gee MAM, Taylor RN, Murton BJ (2004) Mantle components in Iceland and adjacent ridges investigated using double-spike Pb isotope ratios. Geochim Cosmochim Acta 68:361–386

    Google Scholar 

  • Ulfbeck D, Baker J, Waight T, Krogstad E (2003) Rapid sample digestion by fusion and chemical separation of Hf for isotopic analysis by MC-ICPMS. Talanta 59:365–373

    Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Google Scholar 

  • Weis D, Frey FA, Leyrit H, Gautier I (1993) Kerguelen Archipelago: geochemical and isotopic study of the Southast Province lavas. Earth Planet Sci Lett 118:101–119

    Google Scholar 

  • Weis D, Frey FA, Giret A, Cantagrel JM (1998) Geochemical characteristics of the youngest volcano (Mount Ross) in the Kerguelen Archipelago: inferences for magma flux, lithosphere assimilation and composition of the Kerguelen plume. J Petrol 39:973–994

    Google Scholar 

  • Willbold M, Stracke A (2006) Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst 7:Q04004. doi:10.1029/2005GC001005

    Google Scholar 

  • Woodhead JD, Devey CW (1993) Geochemistry of the Pitcairn Seamounts. 1. Source character and temporal trends. Earth Planet Sci Lett 116:81–99

    Google Scholar 

  • Woodhead JD, McCulloch MT (1989) Ancient seafloor signals in Pitcairn-Island lavas and evidence for large-amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett 94:257–273

    Google Scholar 

  • Yang HJ, Frey FA, Weis D, Giret A, Pyle DG, Michon G (1998) Petrogenesis of the flood basalts forming the northern Kerguelen Archipelago: implications for the kerguelen plume. J Petrol 39:711–748

    Google Scholar 

  • Yu DM, Fontignie D, Schilling JG (1997) Mantle plume-ridge interactions in the Central North Atlantic: a Nd isotope study of mid-Atlantic Ridge basalts from 30 degrees N to 50 degrees N. Earth Planet Sci Lett 146:259–272

    Google Scholar 

Download references

Acknowledgments

The Danish National Research Foundation provided funding for this research through a grant to the former Danish Lithosphere Centre. We would like to thank David Ulfbeck, Martin Bizzarro and Toby Leeper for assistance with analytical work. We thank Gitte Pedersen and Martin Jebens for contributing samples and data to this study. We acknowledge the Danish Natural Science Research Council (SNF) for Grant 980197 awarded to Paul Martin Holm. We thank Andreas Stracke, John Lassiter and an anonymous reviewer for their thoughtful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abigail K. Barker.

Additional information

Communicated by C. Ballhaus.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 107 kb)

Supplementary material 2 (PDF 693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barker, A.K., Holm, P.M., Peate, D.W. et al. A 5 million year record of compositional variations in mantle sources to magmatism on Santiago, southern Cape Verde archipelago. Contrib Mineral Petrol 160, 133–154 (2010). https://doi.org/10.1007/s00410-009-0470-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0470-x

Keywords

Navigation