Skip to main content
Log in

The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The major and trace-element geochemistry, Sr–Nd bulk-rock isotopes, U–Pb zircon chronology and Lu–Hf isotopic compositions are described for three granitic bodies which intrude the Nyingchi gneisses (Lhasa terrane) along the western margin of the eastern Himalayan syntaxis. The Bayi two-mica granite and Lunan granite–granodiorite were intruded at 22 ± 1 and 25.4 ± 0.3 Ma, respectively, whereas the Confluence biotite granite was emplaced at 49.1 ± 0.4 Ma. All share strong depletions in Y and HREE requiring a garnet-bearing source both during and following the Eocene collision of the Indian plate with the Lhasa terrane. The isotope geochemistry of these intrusives (ε Nd(t) = −3 to −5, 87Sr/86Sr(t) = 0.706–0.707) indicates a crustal source within the Lhasa terrane. Sr–Nd systematics of the garnet-bearing Nyingchi gneisses together with the U–Pb and Lu–Hf isotopic ratios of detrital zircons recovered from this unit identifies it as a potential melt source. The combined element and isotope geochemistry of the plutons indicate a mixed source; the gneisses provide the older component whereas the Gangdese batholith provides a younger, siliceous component. The involvement of garnet-bearing crustal material in melt sources from the Cretaceous (80 Ma) to the Miocene (20 Ma) is consistent with the presence of a thicker continental crust in the eastern Lhasa terrane, as is the presence of magmatic epidote in several plutons which indicates a regional deepening level of exposure eastwards. Post-collision crustal melting is synchronous with proposed slab break-off during the early Miocene, suggesting advective heating by rising asthenospheric melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amelin Y, Lee DC, Halliday AN (2000) Early-middle Archean crustal evolution deduced from Lu–Hf and U–Pb isotopic studies of single zircon grains. Geochim Cosmochim Acta 64:4205–4225

    Article  Google Scholar 

  • Andersen T (2002) Correction of common lead in U–Pb analyses that do not report 204Pb. Chem Geol 192:59–79

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (1997) The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Booth AL, Zeitler PK, Kidd WSF, Wooden J, Liu YP, Idleman B, Hren M, Chamberlain CP (2004) U–Pb Zircon constrains on the tectonic evolution of southeastern Tibet, Namche Barwa area. Am J Sci 304:889–929

    Article  Google Scholar 

  • Booth AL, Page Chamberlain P, Kidd WSF, Zeitler PK (2009) Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche Barwa. Geol Soc Am Bull 121:385–407

    Google Scholar 

  • Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q, zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Article  Google Scholar 

  • Chung SL, Chu MF, Zhang Y, Xie Y, Lo CH, Lee TY, Lan CY, Li X, Zhang Q, Wang Y (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth Sci Rev 68:173–196

    Article  Google Scholar 

  • Coulon C, Maluski H, Bollinger C, Wang S (1986) Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar/40Ar dating, petrological characteristics and geodynamical significance. Earth Planet Sci Lett 79:281–302

    Article  Google Scholar 

  • Debon F, Le Fort P, Sheppard SMF, Sonet J (1986) The four plutonic belts of the Transhimalaya–Himalaya: a chemical, mineralogical, isotopic and chronological synthesis along a Tibet-Nepal section. J Petrol 27:281–302

    Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and implications for crust formation and mantle evolution in the Proterozoic. Nature 291:193–197

    Article  Google Scholar 

  • Dewey JF, Shackleton RM, Chengfa C, Yiyin S (1988) The tectonic evolution of the Tibetan Plateau. Phil Trans R Soc Lond A 327:379–413

    Article  Google Scholar 

  • Ding L, Zhong D, Yin A, Kapp P, Harrison TM (2001) Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa). Earth Planet Sci Lett 192:423–438

    Article  Google Scholar 

  • Ding L, Kapp P, Zhong D, Deng W (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865

    Article  Google Scholar 

  • Gao S, Rudnick RL, Yuan HL, Liu XM, Liu YS, Xu WL, Ling WL, Ayers J, Wang XC, Wang QH (2004) Recycling lower continental crust in the North China craton. Nature 432:892–897

    Article  Google Scholar 

  • Geng QR, Pan GT, Zheng LL, Chen ZL, Fisher RD, Sun ZM, Ou CS, Dong H, Wang XW, Li S, Lou XY, Fu H (2006) The Eastern Himalayan syntaxis: major tectonic domains, ophiolitic mélanges and geologic evolution. J Asian Earth Sci 27:265–285

    Article  Google Scholar 

  • Guo ZF, Wilson M, Liu JQ (2007) Post-collision adakites in south Tibet: products of partial melting of subduction-modified lower crust. Lithos 96:205–224

    Article  Google Scholar 

  • Harris NBW, Ronghua X, Lewis CL, Chengwei J (1988a) Plutonic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A 327:145–168

    Article  Google Scholar 

  • Harris NBW, Ronghua X, Lewis CL, Hawkesworth CJ, Yuquan Z (1988b) Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A 327:263–285

    Article  Google Scholar 

  • Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Article  Google Scholar 

  • Inger S, Harris NBW (1993) Geochemical constraints on leucogranite magmatism in the Langtang Valley, Nepal Himalaya. J Petrol 34:345–368

    Google Scholar 

  • Kapp JLD, Harrison TM, Kapp P, Grove M, Lovera OM, Lin D (2005) Nyainqentanglha Shan: a window into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. J Geophys Res 110. doi:101029/2004JB003330

  • King J, Harris N, Argles T, Parrish R, Charlier B, Sherlock S, Zhang HF (2007) First field evidence for southward ductile flow of Asian crust beneath southern Tibet. Geology 35:727–730

    Article  Google Scholar 

  • Ludwig K (2003) User’s manual for isoplot 3.0: a geochronological toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication, vol 4, pp 1–77

  • Mahéo G, Guillot S, Blichert-Toft J, Rolland Y, Pêcher A (2002) A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Planet Sci Lett 195:45–58

    Article  Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Article  Google Scholar 

  • Miller C, Schuster R, Klötzli U, Mair V, Frank W, Purtscheller F (1999) Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical, Sr–Nd–Pb–O isotopic constraints for mantle source characteristics and petrogenesis. J Petrol 40:1399–1424

    Article  Google Scholar 

  • Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM (2007) Mantle contributions to crustal thickening during continental collision: evidence from Cenozoic igneous rocks in southern Tibet. Lithos 96:225–242

    Article  Google Scholar 

  • Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S (2008) Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chem Geol 250:49–67

    Article  Google Scholar 

  • Montel JM (1993) A model for monazite/melt equilibrium and application to the generation of granitic magmas. Chem Geol 110:127–146

    Article  Google Scholar 

  • Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Cong QR, Zhao ZD, Liao ZL (2006) Spatial–temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrol Sin 22:521–533

    Google Scholar 

  • Pearce JA, Houjun M (1988) Volcanic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A 327:169–201

    Article  Google Scholar 

  • Prince C, Harris N, Vance D (2001) Fluid-enhanced melting during prograde metamorphism. J Geol Soc Lond 158:233–241

    Article  Google Scholar 

  • Quidellieur X, Grove M, Lovera TOM, Harrison TM, Yin A, Ryerson FJ (1997) The thermal evolution and slip history of the Renbu-Zedong thrust, southeastern Tibet. J Geophys Res 102:2659–2679

    Google Scholar 

  • Schärer E, Munker C, Mezger K (2001) Calibration of the lutetium–hafnium clock. Science 293:683–687

    Article  Google Scholar 

  • Schmidt MW, Poli S (2004) Magmatic epidote. Rev Mineral Geochem 56:399–430

  • Seward D, Burg JP (2008) Growth of the Namche Barwa syntaxis and associated evolution of the Tsangpo gorge: constraints from structural and thermochronological data. Tectonophysics 451:282–289

    Article  Google Scholar 

  • Stevenson RK, Patchett PJ (1990) Implications for the evolution of continental crust from Hf isotopes of Archean detrital zircons. Geochim Cosmochim Acta 54:1683–1697

    Article  Google Scholar 

  • Vervoort JD, Blichert-Toft J (1999) Evolution of the depleted mantle: Hf isotope evidence from juvenile rocks through time. Geochim Cosmochim Acta 63:533–556

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Wen DR, Chung SL, Song B, Lizuka Y, Yang HJ, Ji J, Liu D, Gallet S (2008a) Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105:1–11

    Article  Google Scholar 

  • Wen DR, Liu D, Chung SL, Chu MF, Ji J, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH (2008b) Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chem Geol 252:191–201

    Article  Google Scholar 

  • Williams H, Turner S, Kelley S, Harris N (2001) Age and composition of dikes in southern Tibet: new constraints on the timing of east–west extension and its relationship to post-collisional magmatism. Geology 29:339–342

    Article  Google Scholar 

  • Yin A (2000) Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision. J Geophys Res 105:21745–21759

    Article  Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibet Orogen. Ann Rev Earth Planet Sci Lett 28:211–280

    Article  Google Scholar 

  • Yuan HL, Gao S, Liu XM, Li HM, Gunther D, Wu FY (2004) Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards Geoanalyt Res 28:353–370

    Article  Google Scholar 

  • Yuan HL, Gao S, Dai ML, Zong CL, Gunther D, Fontaine GH, Liu XM, Diwu CR (2008) Simultaneous determinations of U–Pb age, Hf isotopes and trace element compositions of zircon by excimer laser-ablation quadrupole and multiple-collector ICP-MS. Chem Geol 247:100–118

    Article  Google Scholar 

  • Zhang HF, Gao S, Zhong ZQ, Zhang BR, Zhang L, Hu SH (2002) Geochemical and Sr–Nd–Pb isotopic compositions of Cretaceous granitoids: constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh pressure metamorphic belt, China. Chem Geol 186:281–299

    Article  Google Scholar 

  • Zhang HF, Harris N, Parrish R, Kelley S, Zhang L, Rogers N, Argles T, King J (2004) Causes and consequences of protracted melting of the mid-crust exposed in the North Himalayan antiform. Earth Planet Sci Lett 228:195–212

    Article  Google Scholar 

  • Zhang HF, Xu WC, Zong KE, Yuan HL, Harris N (2008) Tectonic evolution of metasediments from the Gangdise terrane, Asian plate, Eastern Himalayan Syntaxis, Tibet. Intern Geol Rev 50:914–930

    Article  Google Scholar 

  • Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC, Liu B (2009) Early Cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt–peridotite interaction? J Asian Earth Sci 34:298–309

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of China (Grants 40773019 and 40821061) and by the Ministry of Education of China and the State Administration of Foreign Expert Affairs of China (Grant B07039). We thank Randy Parrish and Tom Argles for helpful discussions in developing the concepts described in this paper. The authors are grateful to three anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Zhang.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Harris, N., Guo, L. et al. The significance of Cenozoic magmatism from the western margin of the eastern syntaxis, southeast Tibet. Contrib Mineral Petrol 160, 83–98 (2010). https://doi.org/10.1007/s00410-009-0467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0467-5

Keywords

Navigation