Skip to main content

Advertisement

Log in

An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Piston cylinder experiments were performed to constrain the pressure and temperature conditions for two high-pressure antigorite dehydration reactions found in silica-enriched serpentinites from Cerro del Almirez (Nevado–Filábride Complex, Betic Cordillera, southern Spain). At 630–660°C and pressures greater than 1.6 GPa, antigorite first reacts with talc to form orthopyroxene ± chlorite + fluid. We show that orthopyroxene + antigorite is restricted to high-pressure metamorphism of silica-enriched serpentinite. This uncommon assemblage is helpful in constraining metamorphic conditions in cold subduction environments, where antigorite serpentinites have no diagnostic assemblages over a large pressure and temperature range. The second dehydration reaction leads to the breakdown of antigorite to olivine + orthopyroxene + chlorite + fluid. The maximum stability of antigorite is found at 680°C at 1.9 GPa, which also corresponds to the maximum pressure limit for tremolite coexisting with olivine + orthopyroxene. The high aluminium (3.70 wt% Al2O3) and chromium contents (0.59 wt% Cr2O3) of antigorite in the investigated starting material is responsible for the expansion of the serpentinite stability to 60–70°C higher temperatures at 1.8 GPa than the antigorite stability calculated in the Al-free system. The antigorite from our study has the highest Al–Cr contents among all experimental studies and therefore likely constraints the maximum stability of antigorite in natural systems. Comparison of experimental results with olivine–orthopyroxene–chlorite–tremolite assemblages outcropping in Cerro del Almirez indicates that peak metamorphic conditions were 680–710°C and 1.6–1.9 GPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8:Q08002. doi:10.1029/2007GC001617

  • Arai S (1975) Contact metamorphosed dunite–harzburgite complex in the Chugoku district, western Japan. Contrib Mineral Petrol 52:1–16

    Article  Google Scholar 

  • Auzende AL, Devouard B, Guillot S, Daniel I, Baronnet A, Lardeaux JM (2002) Serpentinites from Central Cuba: petrology and HRTEM study. Eur J Mineral 14:905–914

    Article  Google Scholar 

  • Auzende A-L, Guillot S, Devouard B, Baronnet A (2006) Serpentinites in an Alpine convergent setting: effects of metamorphic grade and deformation on microstructures. Eur J Mineral 18:21–33

    Article  Google Scholar 

  • Bach W, Garrido CJ, Paulick H, Harvey J, Rosner M (2004) Seawater–peridotite interactions: first insights from ODP Leg 209, MAR 15°N. Geochem Geophys Geosyst 5:Q09F26. doi:10.1029/2004GC000744

    Article  Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33(13):L13306. doi:10.1029/2006GL025681

    Article  Google Scholar 

  • Bebout GE, Barton MD (1989) Fluid-flow and metasomatism in a subduction zone hydrothermal system—Catalina-Schist Terrane, California. Geology 17:976–980

    Article  Google Scholar 

  • Bebout GE, Barton MD (2002) Tectonic and metasomatic mixing in a high-T, subduction-zone mélange-insights into the geochemical evolution of the slab–mantle interface. Chem Geol 187:79–106

    Article  Google Scholar 

  • Boillot G, Feraud G, Recq M, Girardeau J (1989) Undercrusting by serpentinite beneath rifted margins. Nature 341:523–525

    Article  Google Scholar 

  • Bose K, Navrotsky A (1998) Thermochemistry and phase equilibria of hydrous phases in the system MgO–SiO2–H2O: implications for volatile transport to the mantle. J Geophys Res Solid Earth 103:9713–9719

    Article  Google Scholar 

  • Bowen NL, Tuttle OF (1949) The system MgO–SiO2–H2O. Geol Soc Am Bull 60:439–460

    Article  Google Scholar 

  • Bromiley GD, Pawley AR (2003) The stability of antigorite in the systems MgO–SiO2–H2O (MSH) and MgO–Al2O3–SiO2–H2O (MASH): the effects of Al3+ substitution on high-pressure stability. Am Mineral 88:99–108

    Google Scholar 

  • Capitani G, Mellini M (2004) The modulated crystal structure of antigorite: the m = 17 polysome. Am Mineral 89:147–158

    Google Scholar 

  • Chernosky JV, Day HW, Caruso LJ (1985) Equilibria in the system MgO–SiO2–H2O—experimental-determination of the stability of Mg-anthophyllite. Am Mineral 70:223–236

    Google Scholar 

  • Clarke GL, Aitchison JC, Cluzel D (1997) Eclogites and blueschists of the Pam Peninsula, NE New Caledonia: a reappraisal. J Petrol 38:843–876

    Article  Google Scholar 

  • Connolly JAD (2005) Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet Sci Lett 236:524–541

    Article  Google Scholar 

  • Ellis DJ, Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petrol 71:13–22

    Article  Google Scholar 

  • Evans BW (1977) Metamorphism of Alpine peridotite and serpentinite. Annu Rev Earth Planet Sci 5:397–447

    Article  Google Scholar 

  • Evans BW (2008) Control of the products of serpentinization by the Fe2+Mg-1 exchange potential of olivine and orthopyroxene. J Petrol 49(10):1873–1887. doi:10.1093/petrology/egn050

    Article  Google Scholar 

  • Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of crysotile and serpentinite in the serpentine multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Frost R (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, Central Cascades, Washington. J Petrol 16:272–313

    Google Scholar 

  • Fumagalli P, Poli S (2005) Experimentally determined phase relations in hydrous peridotites to 6.5 GPa and their consequences on the dynamics of subduction zones. J Petrol 46:555–578

    Article  Google Scholar 

  • Garrido CJ, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Trommsdorff V, Alard O, Bodinier JL, Godard M (2005) Enrichment of HFSE in chlorite-harzburgite produced by high-pressure dehydration of antigorite–serpentinite: implications for subduction magmatism. Geochem Geophys Geosyst 6:Q01J15. doi:10.1029/2004GC000791

  • Gómez-Pugnaire MT, Fernández-Soler JM (1987) High-pressure metamorphism in metabasites from the Betic Cordilleras (S.E. Spain) and its evolution during the Alpine orogeny. Contrib Mineral Petrol 95:231–244

    Article  Google Scholar 

  • Gómez-Pugnaire MT, Franz G, López Sánchez-Vizcaíno V (1994) Retrograde formation of NaCl-scapolite in high pressure metaevaporites from the Cordilleras Béticas (Spain). Contrib Mineral Petrol 116:448–461

    Article  Google Scholar 

  • Guillot S, Hattori KH, de Sigoyer J (2000) Mantle wedge serpentinization and exhumation of eclogites: insights from eastern Ladakh, northwest Himalaya. Geology 28:199–202

    Article  Google Scholar 

  • Guillot S, Hattori KH, de Sigoyer J, Nagler T, Auzende AL (2001) Evidence of hydration of the mantle wedge and its role in the exhumation of eclogites. Earth Planet Sci Lett 193:115–127

    Article  Google Scholar 

  • Hermann J, Spandler CJ (2008) Sediment melts at sub-arc depths: an experimental study. J Petrol 49:717–740

    Article  Google Scholar 

  • Hermann J, Müntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327:225–238

    Article  Google Scholar 

  • Hilairet N, Daniel I, Reynard B (2006a) Equation of state of antigorite, stability field of serpentines, and seismicity in subduction zones. Geophys Res Lett 33:L02302. doi:10.1029/2005GL024728

    Article  Google Scholar 

  • Hilairet N, Daniel I, Reynard B (2006b) P–V equations of state and the relative stabilities of serpentine varieties. Phys Chem Miner 33:629–637

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Irving AJ, Ashley PM (1976) Amphibole-olivine-spinel, cordierite-anthophyllite and related hornfelses associated with metamorphosed serpentinites in the goobarragandra district, near Tumut, New South Wales. Aust J Earth Sci 23:19–43

    Article  Google Scholar 

  • Iwamori H, Zhao DP (2000) Melting and seismic structure beneath the northeast Japan arc. Geophys Res Lett 27:425–428

    Article  Google Scholar 

  • Jenkins DM (1981) Experimental phase relations of hydrous peridotites modelled in the system H2O–CaO–MgO–Al2O3–SiO2. Contrib Mineral Petrol 77:166–176

    Article  Google Scholar 

  • Johannes W (1975) Zur synthese and thermischen stabilität von antigorite. Fortschr Mineral 53:36

    Google Scholar 

  • Kawakatsu H, Watada S (2007) Seismic evidence for deep-water transportation in the mantle. Science 316:1468–1471

    Article  Google Scholar 

  • King RL, Bebout GE (2006) Metamorphic evolution along the slab/mantle interface within subduction zones. Geochim Cosmochim Acta 70:A319–A319

    Article  Google Scholar 

  • King RL, Kohn MJ, Eiler JM (2003) Constraints on the petrologic structure of the subduction zone slab-mantle interface from Franciscan Complex exotic ultramafic blocks. Geol Soc Am Bull 115:1097–1109

    Article  Google Scholar 

  • Komabayashi T, Hirose K, Funakoshi K-i, Takafuji N (2005) Stability of phase A in antigorite (serpentine) composition determined by in situ X-ray pressure observations. Phys Earth Planet Inter 151(3–4):276–289

    Article  Google Scholar 

  • Lagabrielle Y, Bodinier J-L (2008) Submarine reworking of exhumed subcontinental mantle rocks: field evidence from the Lherz peridotites, French Pyrenees. Terra Nova 20:11–21

    Google Scholar 

  • López Sánchez-Vizcaíno V, Rubatto D, Gómez-Pugnaire MT, Trommsdorff V, Müntener O (2001) Middle Miocene high-pressure metamorphism and fast exhumation of the Nevado–Filabride Complex, SE Spain. Terra Nova 13:327–332

    Article  Google Scholar 

  • López Sánchez-Vizcaíno V, Trommsdorff V, Gómez-Pugnaire MT, Garrido CJ, Müntener O, Connolly JAD (2005) Petrology of titanian clinohumite and olivine at the high-pressure breakdown of antigorite serpentinite to chlorite harzburgite (Almirez Massif, S. Spain). Contrib Mineral Petrol 149:627–646

    Article  Google Scholar 

  • López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Garrido CJ, Padrón-Navarta JA, Mellini M (2009) Breakdown mechanisms of titanclinohumite in antigorite serpentinite (Cerro del Almirez massif, S. Spain): a petrological and TEM study. Lithos 107(3–4):216–226. doi:10.1016/j.lithos.2008.10.008

  • Manning CE (1994) The solubility of quartz in H2O in the lower crust and upper mantle. Geochim Cosmochim Acta 58:4831–4839

    Article  Google Scholar 

  • Manning CE (1995) Phase–equilibrium controls on SiO2: metasomatism by aqueous fluid in subduction zones: reaction at constant pressure and temperature. Int Geol Rev 37:1074–1093

    Article  Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Article  Google Scholar 

  • Marchesi C, Garrido CJ, Godard M, Proenza JA, Gervilla F, Blanco-Moreno J (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayari-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petrol 151(6):717–736. doi:710.1007/s00410-00006-00089-00410

    Article  Google Scholar 

  • Matthes S, Knauer E (1981) The phase petrology of the contact metamorphic serpentinite nera Erbendorf, Oberpfalz, Bavaria. Neues Jahrb Geol Palaontol Abh 141:59–89

    Google Scholar 

  • Melekhova E, Schmidt MW, Ulmer P, Guggenbühl E (2006) The reaction talc plus forsterite = enstatite plus H2O revisited: application of conventional and novel experimental techniques and derivation of revised thermodynamic properties. Am Mineral 91:1081–1088

    Article  Google Scholar 

  • Mellini M, Trommsdorff V, Compagnoni R (1987) Antigorite polysomatism—behavior during progressive metamorphism. Contrib Mineral Petrol 97:147–155

    Article  Google Scholar 

  • Moore D, Lockner D (2007) Comparative deformation behavior of minerals in serpentinized ultramafic rock: application to the slab–mantle interface in subduction zones. Int Geol Rev 49:401–415

    Article  Google Scholar 

  • Mysen BO, Ulmer P, Konzett J, Schmidt MW (1998) The upper mantle near convergent plate boundaries. In: Hemley RJ (ed) Ultrahigh-Pressure mineralogy: physics and chemistry of the Earth’s deep interior, vol 37. Mineralogical Society of America, Washington, pp 97–138

    Google Scholar 

  • Nozaka T, Shibata T (1995) Mineral paragenesis in thermally metamorphosed serpentinites, Ohsa-yama, Okayama Prefecture. Okayama Univ Earth Sci Rep 2(1):1–11

    Google Scholar 

  • O’Hanley D (1996) Serpentinites: records of petrologic and tectonic history. Oxford University Press, Oxford, p 277

    Google Scholar 

  • Padrón-Navarta JA, López Sánchez-Vizcaíno V, Garrido CJ, Gómez-Pugnaire MT, Jabaloy A, Capitani G, Mellini M (2008) Highly ordered antigorite from Cerro del Almirez HP–HT serpentinites, SE Spain. Contrib Mineral Petrol 156:679–688

    Article  Google Scholar 

  • Paulick H, Bach W, Godard M, De Hoog JCM, Suhr G, Harvey J (2006) Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20’N, ODP Leg 209): implications for fluid/rock interaction in slow spreading environments. Chem Geol 234:179–210

    Article  Google Scholar 

  • Pawley AR (1998) The reaction talc plus forsterite = enstatite plus H2O: new experimental results and petrological implication. Am Mineral 83:51–57

    Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302

    Article  Google Scholar 

  • Peacock SM, Hyndman RD (1999) Hydrous minerals in the mantle wedge and the maximum depth of subduction thrust earthquakes. Geophys Res Lett 26:2517–2520

    Article  Google Scholar 

  • Perrillat JP, Daniel I, Koga KT, Reynard B, Cardon H, Crichton WA (2005) Kinetics of antigorite dehydration: a real-time X-ray diffraction study. Earth Planet Sci Lett 236:899–913

    Article  Google Scholar 

  • Pickering JM, Schwab BE, Johnston AD (1998) Off-center hot spots: double thermocouple determination of the thermal gradient in a 1.27-cm (1/2in) CaF2 piston-cylinder furnace assembly. Am Mineral 83:228–235

    Google Scholar 

  • Pinsent RH, Hirst DM (1977) The metamorphism of the Blue River ultramafic body, Cassiar, British Columbia, Canada. J Petrol 18:567–594

    Google Scholar 

  • Puga E, Díaz de Federico A, Fediukova E, Bondi M, Morten L (1989) Petrology, geochemistry and metamorphic evolution of the ophiolitic eclogites and related rocks from the Sierra Nevada (Betic Cordilleras, Southeastern Spain). Schweiz Mineral Petrogr Mitt 69:435–455

    Google Scholar 

  • Puga E, Nieto JM, Díaz de Federico A, Bodinier JL, Morten L (1999) Petrology and metamorphic evolution of ultramafic rocks and dolerite dykes of the Betic Ophiolitic Association (Mulhacen Complex, SE Spain): evidence of eo-Alpine subduction following an ocean-floor metasomatic process. Lithos 49:23–56

    Article  Google Scholar 

  • Puga E, Díaz de Federico A, Nieto JM (2002) Tectonostratigraphic subdivision and petrological characterisation of the deepest complexes of the Betic zone: a review. Geodinamica Acta 15:23–43

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Rupke LH, Morgan JP, Hort M, Connolly JAD (2004) Serpentine and the subduction zone water cycle. Earth Planet Sci Lett 223:17–34

    Article  Google Scholar 

  • Scambelluri M, Müntener O, Hermann J, Piccardo GB, Trommsdorff V (1995) Subduction of water into the mantle—history of an alpine peridotite. Geology 23:459–462

    Article  Google Scholar 

  • Scambelluri M, Bottazzi P, Trommsdorff V, Vannucci R, Hermann J, Gómez-Pugnaire MT, López Sánchez-Vizcaíno V (2001) Incompatible element-rich fluids released by antigorite breakdown in deeply subducted mantle. Earth Planet Sci Lett 192:457–470

    Article  Google Scholar 

  • Scambelluri M, Fiebig J, Malaspina N, Müntener O, Pettke T (2004a) Serpentinite subduction: implications for fluid processes and trace-element recycling. Int Geol Rev 46:595–613

    Article  Google Scholar 

  • Scambelluri M, Müntener O, Ottolini L, Pettke TT, Vannucci R (2004b) The fate of B, Cl and Li in the subducted oceanic mantle and in the antigorite breakdown fluids. Earth Planet Sci Lett 222:217–234

    Article  Google Scholar 

  • Scambelluri M, Malaspina N, Hermann J (2007) Subduction fluids and their interaction with the mantle wedge: a perspective from the study of high-pressure ultramafic rocks. Period Mineral 76:253–265

    Google Scholar 

  • Schilling F, Wunder B (2004) Temperature distribution in piston-cylinder assemblies: numerical simulations and laboratory experiments. Eur J Mineral 16:7–14

    Article  Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Article  Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59(20):4219–4235

    Article  Google Scholar 

  • Sorensen SS, Grossman JN (1989) Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochim Cosmochim Acta 53:3155–3177

    Article  Google Scholar 

  • Sorensen SS, Grossman JN (1993) Accessory minerals and subduction zone metasomatism—a geochemical comparison of 2 melanges (Washington and California, USA). Chem Geol 110:269–297

    Article  Google Scholar 

  • Spandler C, Hermann J, Arculus R, Mavrogenes J (2003) Redistribution of trace elements during prograde metamorphism from lawsonite blueschist to eclogite facies; implications for deep subduction-zone processes. Contrib Mineral Petrol 146:205–222

    Article  Google Scholar 

  • Spandler C, Hermann J, Faure K, Mavrogenes J, Arculus R (2008) The importance of talc and chlorite “hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia. Contrib Mineral Petrol 155:181–198

    Article  Google Scholar 

  • Springer RK (1974) Contact Metamorphosed Ultramafic Rocks in the Western Sierra Nevada Foothills, California. J Petrol 15:160–195

    Google Scholar 

  • Tatsumi Y (1989) Migration of fluid phases and genesis of basalt magmas in subduction zones. J Geophys Res Solid Earth Planets 94:4697–4707

    Article  Google Scholar 

  • Tenthorey E, Hermann J (2004) Composition of fluids during serpentinite breakdown in subduction zones: evidence for limited boron mobility. Geology 32:865–868

    Article  Google Scholar 

  • Torres-Roldán RL, García-Casco A, García-Sanchez PA (2000) CSpace: an integrated workplace for the graphical and algebraic analysis of phase assemblages on 32-bit wintel platforms. Comput Geosci 26:779–793

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272:423–437

    Google Scholar 

  • Trommsdorff V, Evans BW (1974) Alpine metamorphism of peridotitic rocks. Schweiz Mineral Petrogr Mitt 72:229–242

    Google Scholar 

  • Trommsdorff V, López Sánchez-Vizcaíno V, Gómez-Pugnaire MT, Müntener O (1998) High pressure breakdown of antigorite to spinifex-textured olivine and orthopyroxene, SE Spain. Contrib Mineral Petrol 132:139–148

    Article  Google Scholar 

  • Uehara S, Kamata K (1994) Antigorite with a large supercell from Saganoseki, Oita prefecture, Japan. Can Mineral 32:93–103

    Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1999) Phase relations of hydrous mantle subducting to 300 km. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure experimentation. Special Publication No. 6. The Geochemical Society, Houston, pp 259–281

    Google Scholar 

  • Vance JA, Dungan MA (1977) Formation of peridotites by deserpentinization in the Darrington and Sultan areas, Cascade Mountains, Washington. Geol Soc Am Bull 88:1497–1508

    Article  Google Scholar 

  • Watson E, Wark D, Price J, Van Orman J (2002) Mapping the thermal structure of solid-media pressure assemblies. Contrib Mineral Petrol 142:640–652

    Google Scholar 

  • Weiss M (1997) Clinohumites: a field and experimental study. Ph.D. thesis. ETH, Zurich, p 168

  • Worden RH, Droop GTR, Champness PE (1991) The reaction antigorite = olivine + talc + H2O in the Bergell aureole, N. Italy. Mineral Mag 55:367–377

    Article  Google Scholar 

  • Wunder B, Schreyer W (1997) Antigorite: high-pressure stability in the system MgO–SiO2–H2O (MSH). Lithos 41:213–227

    Article  Google Scholar 

  • Wunder B, Wirth R, Gottschalk M (2001) Antigorite: pressure and temperature dependence of polysomatism and water content. Eur J Mineral 13:485–495

    Article  Google Scholar 

Download references

Acknowledgments

Three anonymous reviewers are thanked for their insightful and helpful reviews. We thank D. Scott, W.O. Hibberson and D. Clark for their technical support in the running of the high-pressure experiments at the RSES (ANU) and Frank Brink for his technical assistance in the Electron Microscopy Unit (ANU). We also thank Prof. Marcello Mellini for his comments on an early draft of the paper. This work was supported by the Spanish “Ministerio de Ciencia e Innovación (MICINN)” through research grants CGL2006-04440, CGL2007-61205/BTE, and ACI2006-A9-0580, the Spanish Council for Research (CSIC) through grant 2008-30I014, and by the “Junta de Andalucía” research groups RNM-145 and RNM-131. J.A. Padrón-Navarta1 is supported by fellowship AP2005-060 from the “Programa de Formación del Profesorado Universitario”. J. Hermann acknowledges financial support by the Australian Research Council. We are grateful for the editorial help and support provided by J. Hoefs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Alberto Padrón-Navarta.

Additional information

Communicated by J. Hoefs.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padrón-Navarta, J.A., Hermann, J., Garrido, C.J. et al. An experimental investigation of antigorite dehydration in natural silica-enriched serpentinite. Contrib Mineral Petrol 159, 25–42 (2010). https://doi.org/10.1007/s00410-009-0414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-009-0414-5

Keywords

Navigation