Skip to main content
Log in

Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

High-T torsion experiments on lizardite + chrysotile serpentinites produced mineralogical and micro/nanostructural changes, with important implications in rheological properties. High-resolution TEM showed that specimens underwent ductile [by microkinking and (001) interlayer glide] and brittle deformation (by microfracturing), together with dehydration and break-down reactions. Lizardite is affected by polytypic disorder and microkinking [kink axial planes at high angle with respect to (001) planes], that were not present in the initial ordered 1T-lizardite. Chrysotile fibres are deformed, resulting in elliptical cross-sections, with strong loss of interlayer cohesion. Both lizardite and chrysotile break down to a fine intergrowth of olivine (up to 200 nm), talc (up to 30 nm) and poorly-crystalline material. Lizardite-out reaction preferentially occurs at kink axial planes, representing sites of preferential strain and enhanced reactivity; conversely, chrysotile break-down is a bulk process, resulting in large healed olivine aggregates, up to micrometric in size. Overall observations suggest that dehydration and break-down reactions are more advanced in chrysotile than in lizardite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreani M, Boullier AM, Gratier JP (2005) Development of schistosity by dissolution-crystallization in a Californian serpentinite gouge. J Struct Geol 27:2256–2267. doi:10.1016/j.jsg.2005.08.004

    Article  Google Scholar 

  • Auzende AL, Guillot S, Devouard B, Baronnet A (2006) Serpentinites in an Alpine convergent setting: effects of metamorphic grade and deformation on microstructures. Eur J Mineral 18:21–33. doi:10.1127/0935-1221/2006/0018-0021

    Article  Google Scholar 

  • Brodie KH, Rutter EH (1987) The role of transiently fine-grained reaction products in syntectonic metamorphism: natural and experimental examples. Can J Earth Sci 24:556–564

    Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • Dengo CA, Logan JM (1981) Implications of the mechanical and frictional behaviour of serpentinite to seismogenic faulting. J Geophys Res 86:10771–10782. doi:10.1029/JB086iB11p10771

    Article  Google Scholar 

  • Escartin J, Hirth G, Evans B (1997) Nondilatant brittle deformation of serpentinites: implications for Mohr-Coulomb theory and the strength of faults. J Geophys Res 102:2897–2913. doi:10.1029/96JB02792

    Article  Google Scholar 

  • Escartin J, Hirth G, Evans B (2001) Strengths of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29:1023–1026. doi :10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2

    Article  Google Scholar 

  • Escartin J, Hirth G, Evans B (2004) Permeability of serpentinite and the rheology of talc: localization of deformation and subduction processes. Geophys Res Abstr 6:7599

    Google Scholar 

  • Escartin J, Andreani M, Hirth G, Evans B (2008) Relationships between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet Sci Lett 268:463–475. doi:10.1016/j.epsl.2008.02.004

    Article  Google Scholar 

  • Evans BW (2004) The serpentine multisystem revisited: chrysotile is metastable. Int Geol Rev 46:479–506. doi:10.2747/0020-6814.46.6.479

    Article  Google Scholar 

  • Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93

    Google Scholar 

  • Gates AE, Kambin RC (1990) Comparison of the natural deformation of the State-Line serpentinite USA with experimental studies. Tectonophysics 182:249–258. doi:10.1016/0040-1951(90)90166-6

    Article  Google Scholar 

  • Gregorkiewitz M, Lebech B, Mellini M, Viti C (1996) Hydrogen positions and thermal expansion in lizardite-1T from Elba by Rietveld refinement of neutron powder diffraction: a low-temperature study. Am Mineral 81:1111–1116

    Google Scholar 

  • Handin J, Heard HC, Magouirk JN (1967) Effects of the intermediate principal stress on the failure of limestone dolomite, and glass at different temperatures and strain rates. J Geophys Res 72:611–640. doi:10.1029/JZ072i002p00611

    Article  Google Scholar 

  • Hermann J, Muntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327:225–238. doi:10.1016/S0040-1951(00)00171-2

    Article  Google Scholar 

  • Hirose T, Bystricky M, Kunze K, Stuniz H (2006) Semi-brittle flow during dehydration of lizardite-chrysotile serpentinite deformed in torsion: implications for the rheology of oceanic lithosphere. Earth Planet Sci Lett 249:484–493. doi:10.1016/j.epsl.2006.07.014

    Article  Google Scholar 

  • Hoogerduijin Strating EH, Visser RLM (1994) Structures in natural serpentinite gouges. J Struct Geol 16:1205–1215. doi:10.1016/0191-8141(94)90064-7

    Article  Google Scholar 

  • Irifune T, Kuroda K, Funamori N, Uchida T, Yagi T, Inoue T et al (1996) Amorphization of serpentinite at high pressure and high temperature. Nature 272:1468–1470

    Google Scholar 

  • Jung H, Green HW (2004) Experimental faulting of serpentinite during dehydration: implications for earthquakes, seismic low-velocity zones and anomalous hypocenter distributions in subduction zones. Int Geol Rev 46:1089–1102. doi:10.2747/0020-6814.46.12.1089

    Article  Google Scholar 

  • Mellini M, Viti C (1994) Crystal structure of lizardite-1T from Elba, Italy. Am Mineral 79:1194–1198

    Google Scholar 

  • Mevel C (2003) Serpentinization of abyssal peridotites at mid-ocean ridges. Geoscience 335:825–852. doi:10.1016/j.crte.2003.08.006

    Article  Google Scholar 

  • Moore DE, Lockner DA, Summers R, Shengli M, Byerlee JD (1996) Strength of chrysotile-serpentinite gouge hydrothermal conditions: can it explain a weak San Andreas fault? Geology 24:1041–1044. doi :10.1130/0091-7613(1996)024<1041:SOCSGU>2.3.CO;2

    Article  Google Scholar 

  • Moore DE, Lockner DA, Shengli M, Summers R, Byerlee JD (1997) Strengths of serpentinite gouges at elevated temperatures. J Geophys Res 102:14787–14801. doi:10.1029/97JB00995

    Article  Google Scholar 

  • Morrow CA, Moore DE, Lockner DA (2000) The effect of mineral bond strength and adsorbed water on fault gouge frictional strength. Geophys Res Lett 27:815–818. doi:10.1029/1999GL008401

    Article  Google Scholar 

  • Nicolas A, Poirier JP (1976) Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. Wiley, London, p 462

    Google Scholar 

  • O’Hanley DS (1996) Serpentinites—Records of tectonic and petrological history. Oxford University Press, New York, p 277

    Google Scholar 

  • Paterson MS, Olgaard DL (2000) Rock deformation tests to large shear strains in torsion. J Struct Geol 22:1341–1358. doi:10.1016/S0191-8141(00)00042-0

    Article  Google Scholar 

  • Peacock SM (2001) Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29:299–302. doi :10.1130/0091-7613(2001)029<0299:ATLPOD>2.0.CO;2

    Article  Google Scholar 

  • Raleigh CB, Paterson MS (1965) Experimental deformation of serpentinites and its tectonic implications. J Geophys Res 70:3965–3985. doi:10.1029/JZ070i016p03965

    Article  Google Scholar 

  • Reinen L (2000) Seismic and aseismic slip indicators in serpentinite gouge. Geology 28:135–138. doi :10.1130/0091-7613(2000)28<135:SAASII>2.0.CO;2

    Article  Google Scholar 

  • Reinen L, Weeks JD, Tullis TE (1991) The frictional behaviour of serpentinite: implications for aseismic creep on shallow crustal faults. Geophys Res Lett 18:1921–1924. doi:10.1029/91GL02367

    Article  Google Scholar 

  • Rutter EH, Brodie KH (1988) Experimental syntectonic dehydration of serpentinite under conditions of controlled pore water pressure. J Geophys Res 93:4907–4932. doi:10.1029/JB093iB05p04907

    Article  Google Scholar 

  • Scarfe CM, Wyllie PJ (1967) serpentinite dehydration curves and their bearing on serpentinite deformation in orogenesis. Nature 215:945–946. doi:10.1038/215945a0

    Article  Google Scholar 

  • Trommsdorff V, Evans BW (1972) Progressive metamorphism of antigorite schist in the Bergell tonalite aureole (Italy). Am J Sci 272:423–437

    Google Scholar 

  • Ulmer P (2001) Partial melting in the mantle wedge: the role of H2O in the genesis of mantle-derived arc-related magmas. Phys Earth Planet Inter 127:215–232. doi:10.1016/S0031-9201(01)00229-1

    Article  Google Scholar 

  • Ulmer P, Trommsdorff V (1995) Serpentine stability to mantle depths and subduction-related magmatism. Science 268:858–861. doi:10.1126/science.268.5212.858

    Article  Google Scholar 

  • Viti C, Mellini M (1997) Contrasting chemical compositions in associated lizardite and chrysotile in veins from Elba, Italy. Eur J Mineral 9:585–596

    Google Scholar 

  • Viti C, Mellini M (1998) Mesh textures and bastites in the Elba retrograde serpentinites. Eur J Mineral 10:1341–1359

    Google Scholar 

  • Wicks FJ (1984a) Deformation histories as recorded by serpentinites. I. Deformation prior to serpentinization. Can Mineral 22:185–195

    Google Scholar 

  • Wicks FJ (1984b) Deformation histories as recorded by serpentinites. II. Deformation during and after serpentinization. Can Mineral 22:197–203

    Google Scholar 

  • Wicks FJ, Whittaker EJW (1977) Serpentine textures and serpentinization. Can Mineral 15:459–488

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cecilia Viti.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viti, C., Hirose, T. Dehydration reactions and micro/nanostructures in experimentally-deformed serpentinites. Contrib Mineral Petrol 157, 327–338 (2009). https://doi.org/10.1007/s00410-008-0337-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0337-6

Keywords

Navigation