Skip to main content
Log in

Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Apatite phenocrysts from the 1963 and 1723 eruptions of Irazú volcano (Costa Rica) record a volatile evolution history that confirms previous melt inclusion studies, and provides additional information concerning the relative and absolute timing of subvolcanic magmatic events. Measurements of H, Cl, and F by secondary ion mass spectrometry reveal multiple populations of apatite in both 1723 and 1963 magmas. Assuming nominal apatite/melt partition coefficients allows us to compare the pattern of melt inclusions and apatites in ternary space, demonstrating the fidelity of the record preserved in apatite, and revealing a complex history of magma mixing with at least two components. The preservation of heterogeneous populations of apatite and of internally heterogeneous crystals requires short timescales (days to years) for these magmatic processes to occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarado G (1993) Volcanology and petrology of Irazú Volcano. Costa Rica. Ph.D. thesis, Christian-Albrechts Universität zu Kiel, Kiel, p 261

    Google Scholar 

  • Alvarado G, Carr MJ, Turrin BD, Swisher CC III, Schmincke H-U, Hudnut KW (2006) Recent volcanic history of Irazú volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing. In: Rose WI, Bluth GJS, Carr MJ, Ewert J, Patino LC, Vallance J (eds) Volcanic hazards in Central America, vol 412, pp 259–276

  • Anderson AT (1974) Evidence for a picritic, volatile-rich magma beneath Mt. Shasta, California. J Petrol 15:243–267

    Google Scholar 

  • Benjamin E, Plank T, Wade J, Kelley K, Hauri E, Alvarado G (2007) High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J Volcanol Geotherm Res 168:25

    Google Scholar 

  • Boyce J, Hervig R (2008) Magmatic degassing histories from apatite volatile stratigraphy. Geology 36(1):63. doi:10.1130/G24184A.1

    Article  Google Scholar 

  • Brenan J (1993) Kinetics of fluorine, chlorine, and hydroxyl exchange in fluorapatite. Chem Geol 110:195–210. doi:10.1016/0009-2541(93)90254-G

    Article  Google Scholar 

  • Clark SK, Reagan MK, Plank T (1998) Trace element and U-series systematics for 1963–1965 tephras from Irazú Volcano, Costa Rica: Implications for magma generation processes and transit times. Geochim Cosmochim Acta 62:2689–2699. doi:10.1016/S0016-7037(98)00179-3

    Article  Google Scholar 

  • Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas; an overview of techniques, advantages, and complications. Chem Geol 183(1–4):5–24. doi:10.1016/S0009-2541(01)00369-2

    Article  Google Scholar 

  • Farley KA, Stockli D (2002) (U-Th)/He dating of phosphates: apatite, monazite, and xenotime. Rev Mineral Geochem 48:559–577

    Article  Google Scholar 

  • Gleadow AGW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the thermochronology of apatite. Rev Mineral Geochem 48:579–630

    Article  Google Scholar 

  • Hovis G, Harlov D, Hahn A, Seigert H (2007) Enthalpies and volumes of F-Cl mixing in fluorapatite–chlorapatite crystalline solutions: Geophys Res Abstr 9:01748

    Google Scholar 

  • John T, Klemd R, Gao J, Garbe-Schönberg C-D (2008) Trace-element mobilization in slabs due to non steady-state fluid–rock interaction: constraints from an eclogite-facies transport vein in blueschist (Tianshan, China). Lithos 103:1–24

    Article  Google Scholar 

  • Mathez E, Webster J (2005) Partitioning behavior of chlorine and fluorine in the system apatite-silicate melt-fluid. Geochim Cosmochim Acta 69(5):1275–1286. doi:10.1016/j.gca.2004.08.035

    Article  Google Scholar 

  • Nadeau SL, Epstein S, Stolper E (1999) Hydrogen and carbon abundances and isotopic ratios in apatite from alkaline intrusives, with a focus on carbonatites. Geochim Cosmochim Acta 63(11–12):1837–1851. doi:10.1016/S0016-7037(99)00057-5

    Article  Google Scholar 

  • Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for Excel. Comput Geosci 28:597–604. doi:10.1016/S0098-3004(01)00081-4

    Article  Google Scholar 

  • Pan YM, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts. Chem Geol 229(1–3):78–95. doi:10.1016/j.chemgeo.2006.01.013

    Article  Google Scholar 

  • Parat F, Holtz F (2004) Sulfur partitioning between apatite and melt and effect of sulfur on apatite solubility at oxidizing conditions. Contrib Mineral Petrol 147:201–212. doi:10.1007/s00410-004-0553-7

    Article  Google Scholar 

  • Peng G, Luhr JF, McGee JJ (1997) Factors controlling sulfur concentrations in volcanic apatite. Am Mineral 82:1210–1224

    Google Scholar 

  • Piccoli P, Candela P (1994) Apatite in felsic rocks: a model for the estimation of initial halogen concentrations in the Bishop Tuff (Long Valley) and Tuolumne intrusive suite (Sierra Nevada batholith) magmas. AJS 294:92–135

    Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107. doi:10.1093/petrology/42.11.2083

    Article  Google Scholar 

  • Sadofsky S, Portnyagin M, Hoernle K, Bogaard P (2008) Subduction cycling of volatiles and trace elements through the Central American volcanic arc: evidence from melt inclusions. Contrib Mineral Petrol 155(4):433–456. doi:10.1007/s00410-007-0251-3

    Article  Google Scholar 

  • Schoene B, Bowring S (2007) Determining accurate temperature—time paths from U–Pb thermochronology: an example from the Kaapvaal craton, southern Africa. Geochim Cosmochim Acta 71(1):165–185. doi:10.1016/j.gca.2006.08.029

    Article  Google Scholar 

  • Spear FS, Pyle JM (2002) Apatite, monazite, and xenotime in metamorphic rocks. Rev Mineral Geochem 48:293–335

    Article  Google Scholar 

  • Streck MJ, Dilles JH (1998) Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith. Geology 26:523–526. doi:10.1130/0091-7613(1998)026<0523:SEOOAM>2.3.CO;2

    Article  Google Scholar 

Download references

Acknowledgments

This project was funded by a National Science Foundation MARGINS program Postdoctoral Fellowship (NSF-EAR-0549082). The SIMS laboratory at Arizona State University is funded by NSF EAR 0622775. Samples were generously provided by T. Plank, and collected by E. Benjamin. Apatites used as standards were provided by J. Hanchar, and S. Bergman. Many people contributed to this project via hearty discussion, including attendees of the SEIZE-SubFac Workshop 2007, and petrologists at ASU and UCLA. The article benefited from constructive criticism from J. Wade, G. Moore, M. Portnyagin, and an anonymous reviewer, and we thank them for their efforts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy W. Boyce.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyce, J.W., Hervig, R.L. Apatite as a monitor of late-stage magmatic processes at Volcán Irazú, Costa Rica. Contrib Mineral Petrol 157, 135–145 (2009). https://doi.org/10.1007/s00410-008-0325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0325-x

Keywords

Navigation