Skip to main content
Log in

P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Fluid transport on the grain-scale controls many rock properties and governs chemical exchange. Charnockites from Lofoten indicate fluid penetration into ternary alkali feldspars controlled by their microtextures. In a process of fluid infiltration at granulite-facies conditions (∼600°C and 8–11 kbar), tiny pyroxenes enclosed in alkali feldspar reacted to amphiboles, which are always spatially connected to perthitic albite. Investigation of these microtextures by TEM imaging of Focused Ion Beam (FIB) prepared foils revealed that pyroxenes in contact with albite lamellae show dissolution features. An amorphous Fe- and Cl-bearing material interpreted to be a residuum of the percolating fluid was found within albite lamellae. Textures and mineral compositions indicate that a Cl-rich aqueous fluid attacked the lamellae, which then provided pathways for further fluid flow. A correspondence was found between feldspar compositions, their microtexture and their degree of alteration as a result of their permeability for fluids at specific temperatures. Hence, in addition to pressure and temperature, small variations of feldspar composition can strongly influence the fluid permeability of feldspathic rocks under lower crustal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSE:

Backscatter electrons

TEM:

Transmission electron microscope

FIB:

Focused ion beam

EMPA:

Electron microprobe analyses

GIF:

Gatan image Filter

EFTEM:

Energy filtered TEM

HAADF:

High annular dark field

STEM:

Scanning TEM

EDX:

Energy dispersive X-ray

References

  • Bachinski SW, Müller G (1971) Experimental determination of the microcline-low albite solvus. J Petrol 12:329–356

    Google Scholar 

  • Boone GM (1969) Origin of clouded red feldspars; petrologic contrasts in a granitic porphyry intrusion. Am J Sci 267:633–668

    Article  Google Scholar 

  • Brady JB (1988) The role of volatiles in the thermal history of metamorphic terranes. J Petrol 29:1187–1213

    Google Scholar 

  • Brown WL, Parsons I (1989) Alkali feldspars: ordering rates, phase transformation and behavior diagrams for igneous rocks. Mineral Mag 53:25–42

    Article  Google Scholar 

  • Cameron M, Sueno S, Prewitt CT, Papike JJ (1973) High-temperature crystal chemistry of acmite, diopside, hedenbergite, jadeite, spodumene, and ureyite. Am Mineral 58(7–8):594–618

    Google Scholar 

  • Carlson WD (2002) Scales of disequilibrium and rates of equilibration during metamorphism. Am Mineral 87:185–204

    Google Scholar 

  • Coghlan RAN (1990) Studies in diffusional transport; grain boundary transport of oxygen in feldspars, diffusion of oxygen, strontium and the REEs in garnet, and thermal histories of granitic intrusions in south-central Maine using oxygen isotopes. Brown University, Providence, Rhode Island, United States, Ph.D. Thesis, p 247

  • Corfu F (2004) U-Pb geochronology of the Leknes Group; an exotic early Caledonian metasedimentary assemblage stranded on Lofoten basement, northern Norway. J Geol Soc London 161:619–627. doi:10.1093/petrology/egh034

    Article  Google Scholar 

  • Della Ventura G, Robert J-L, Bény J-M (1991) Tetrahedrally coordinated Ti4+ in synthetic Ti-rich potassic richterite: ecidense from XRD, FTIR, and Raman studies. Am Mineral 76:1134–1140

    Google Scholar 

  • Evangelakakis C, Kroll H, Voll G, Wenk HR, Meisheng H, Koepcke J (1993) Low-temperature coherent exsolution in alkali feldspars from high-grade metamorphic rocks of Sri Lanka. Contrib Mineral Petrol 114:519–532

    Article  Google Scholar 

  • Farver JR, Yund RA (1999) Oxygen bulk diffusion measurements and TEM characterization of a natural ultramylonite; implications for fluid transport in mica-bearing rocks. J Metamorph Geol 17:669–683

    Article  Google Scholar 

  • Ferry JM (1988) Contrasting mechanisms of fluid flow through adjacent stratigraphic units during regional metamorphism, south-central Maine, USA. Contrib Mineral Petrol 98:1–12

    Article  Google Scholar 

  • Fitz Gerald JD, Parsons I, Cayzer N (2006) Nonotunnels and pull-aparts: defects of exsolution lamellar in alkali feldspars. Am Mineral 91:772–783. doi:10.2138/am.2006.2029

    Article  Google Scholar 

  • Fuhrman ML, Lindsley DH (1988) Ternary-feldspar modeling and thermometry. Am Mineral 73:201–215

    Google Scholar 

  • Ganor J, Matthews A, Paldor N (1989) Constraints on effective diffusivity during oxygen isotope exchange at a marble-schist contact, Sifnos (Cyclades), Greece. Earth Planet Sci Lett 94:208–216

    Article  Google Scholar 

  • Griffin WL, Taylor PN, Hakkinen JW, Heier KS, Iden IK, Krogh EJ, Malm O, Olsen KI, Ormaasen DE, Tveten E (1978) Archaean and Proterozoic crustal evolution in Lofoten-Vesteraelen, N Norway. J Geol Soc London 135:629–647

    Article  Google Scholar 

  • Joesten R, Fisher G (1988) Kinetics of diffusion-controlled mineral growth in the Christmas Mountains (Texas) contact aureole. Geol Soc Am Bull 100:714–732

    Article  Google Scholar 

  • Keller LM, Abart R, Wirth R, Schmid DW, Kunze K (2006) Enhanced mass transfer through short-circuit diffusion: Growth of garnet reaction rims at eclogite facies conditions. Am Mineral 91:1024–1038. doi:10.2138/am.2006.2068

    Article  Google Scholar 

  • Kullerud K (1995) Chlorine, titanium and barium-rich biotites; factors controlling biotite composition and the implications for garnet-biotite geothermometry. Contrib Mineral Petrol 120:42–59

    Article  Google Scholar 

  • Lagache M, Weisbrod A (1977) The system: two alkali feldspars-KCl-NaCl-H2O at moderate to high temperatures and low pressures. Contrib Mineral Petrol 62:77–101

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo Y (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. Can Mineral 35:219–246

    Google Scholar 

  • Lee JKW (1995) Multipath diffusion in geochronology. Contrib Mineral Petrol 120:60–82

    Article  Google Scholar 

  • Lee MR, Parsons I (1995) Microtextural controls of weathering of perthitic alkali feldspars. Geochim Cosmochim Acta 59:4465–4488

    Article  Google Scholar 

  • Lee MR, Parsons I (1997) Dislocation formation and albitization in alkali feldspars from the Shap granite. Am Mineral 82:557–570

    Google Scholar 

  • Lee MR, Parsons I (1998) Microtextural controls of diagenetic alteration of detrital alkali feldspars: a case study of the Shap conglomerate (Lower Carboniferous) North-west England. J Sediment Res 68:198–211

    Google Scholar 

  • Lee MR, Waldron KA, Parsons I (1995) Exsolution and alteration microtextures in alkali feldspar phenocrysts from the Shap granite. Mineral Mag 59:63–78

    Article  Google Scholar 

  • Lindsley DH (1983) Pyroxene thermometry. Am Mineral 68:477–493

    Google Scholar 

  • Markl G (2001) REE constraints on fractionation processes of massive-type anorthosites on the Lofoten Islands, Norway. Mineral Petrol 72:325–351

    Article  Google Scholar 

  • Markl G, Bucher K (1997) Proterozoic eclogites from the Lofoten islands, northern Norway. Lithos 42:15–35

    Article  Google Scholar 

  • Markl G, Bucher K (1998) Composition of fluids in the lower crust inferred from metamorphic salt in lower crustal rocks. Nature 391:781–783

    Article  Google Scholar 

  • Markl G, Ferry J, Bucher K (1998a) Formation of saline brines and salt in the lower crust by hydration reactions in partially retrogressed granulites from the Lofoten islands, Norway. Am J Sci 298:705–757

    Article  Google Scholar 

  • Markl G, Frost BR, Bucher K (1998b) The origin of anorthosites and related rocks from the Lofoten Islands, Northern Norway; I, Field relations and estimation of intrinsic variables. J Petrol 39:1425–1452

    Article  Google Scholar 

  • Müller G (1971) Der Einfluß der Al, Si-Verteilung auf die Mischungslücke der Alkalifeldspäte. Contrib Mineral Petrol 34:73–79

    Article  Google Scholar 

  • Nakano S, Akai J, Shimobayashi N (2005) Contrasting Fe-Ca distributions and related microtextures in syenite alkali feldspar from the Patagonian Andes, Chile. Mineral Mag 69:521–535. doi:10.1180/0026461056940268

    Article  Google Scholar 

  • Oberti R, Ungaretti L, Cannillo E, Hawthorne FC (1993) The mechanism of Cl incorporation in amphibole. Am Mineral 78:746–752

    Google Scholar 

  • Olsen KI (1978) Metamorphic petrology as fluid-inclusion studies of granulites and amphibolite-facies gneisses on Langøy and W Hinnøy, Vesterålen, N Norway. University of Oslo, pp 1–214

  • Parsons I (1978) Feldspars and fluids in cooling plutons. Mineral Mag J Mineral Soc 42:1–17

    Article  Google Scholar 

  • Parsons I, Thompson P, Lee MR, Cayzer N (2005) Alkali feldspar microtextures as provenance indicators in siliciclastic rocks and their role in feldspar dissolution during transport and diagenesis. J Sediment Res 75:921–942

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1985) “PAP” (φ-ρ-Z) procedure for improved quantitative microanalysis. Microbeam Analysis:104–106

  • Putnis A (1992) Introduction to mineral sciences. University press, Cambridge, p 479

    Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. doi:10.1180/0026461026650056

    Article  Google Scholar 

  • Reddy SM, Potts GJ, Kelley SP (2001) 40Ar/39Ar ages in deformed potassium feldspar: evidence of microstructural control on Ar isotope systematics. Contrib Mineral Petrol 141:186–200. doi:10.1007/s004100000227

    Article  Google Scholar 

  • Retief EA (1962) Preliminary observations on the feldspars from the Pilanesberg alkaline complex, Transvaal, South Africa. Norsk Geologisk Tidsskrift 42:493–513

    Google Scholar 

  • Rutter EH (1983) Pressure solution in nature, theory and experiment. J Geol Soc London 140:725–740

    Article  Google Scholar 

  • Schumacher JC (1991) Empirical ferric iron corrections: Necessity, assumptions and effects on selected geothermobarometers. Mineral Mag 55:3–18

    Article  Google Scholar 

  • Sipling PJ, Yund RA (1976) Experimental determination of the coherent solvus for sanidine-high albite. Am Mineral 61:897–906

    Google Scholar 

  • Smith JV, Brown WL (1988) Feldspar minerals crystal structures, physical, chemical, and microtextural properties. vol 1. Springer, Berlin, p 828

    Google Scholar 

  • Smith P, Parsons I (1974) The alkali-feldspar solvus at 1 kilobar water-vapour pressure. Mineral Mag J Mineral Soc 39:747–767

    Article  Google Scholar 

  • Spear FS (1981) An experimental study of hornblende stability and compositional variability in amphibolite. Am J Sci 281:697–734

    Article  Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10:42–47

    Article  Google Scholar 

  • Voll G (1969) Klastische Mineralien aus den Sedimentserien der Schottischen “Highlands” und ihr Schicksal bei aufsteigender Regional- und Kontaktmetamorphose, Berlin, Habilitation thesis

  • Willaime C, Gandais M (1972) Study of exsolution in alkali feldspars. Calculation of elastic stresses inducing periodic twins. Phys Status Solidi A9:529–539

    Google Scholar 

  • Wirth R (2004) Focused ion beam (FIB); a novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876. doi:10.1127/0935-1221/2004/0016-0863

    Article  Google Scholar 

  • Worden RH, Walker FDL, Parsons I, Brown WL (1990) Development of microporosity, diffusion channels and deuteric coarsening in perthitic alkali feldspar. Contrib Mineral Petrol 104:507–515

    Article  Google Scholar 

  • Yund RA, McLaren AC, Hobbs BE (1974) Coarsening Kinetics of the Exsolution Microstructure in Alkali Feldspar. Contrib Mineral Petrol 48:45–55

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the GeoForschungsZentrum for providing analytical devices. We are much obliged to Gerhard Berger for sample preparation and Oona Appelt for technical assistance with sample characterization. Discussions with Rainer Abart and a review by Wilhelm Heinrich have substantially improved the manuscript. We are grateful to Ian Parsons and two more anonymous reviewers for their meticulous and thorough reviews which improved the paper significantly. Any surviving errors of omission or commission are entirely ours.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Hartmann.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartmann, K., Wirth, R. & Markl, G. P-T-X-controlled element transport through granulite-facies ternary feldspar from Lofoten, Norway. Contrib Mineral Petrol 156, 359–375 (2008). https://doi.org/10.1007/s00410-008-0290-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-008-0290-4

Keywords

Navigation