Skip to main content
Log in

Systematics of zircon crystallisation in the Cretaceous Separation Point Suite, New Zealand, using U/Pb isotopes, REE and Ti geothermometry

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Plutonic zircons from the Cretaceous Separation Point Suite (SPS) were analysed by LA-ICPMS for U–Pb isotope ratios and trace element concentrations. Pooled 206Pb/238U ages range from 112 to 124 Ma. Cathodoluminescence imaging reveals minor inheritence and textural evidence of repeated dissolution and re-precipitation of zircon. Core and rim spot analyses, however, document zircon growth during extended periods of time (>2 myr). Protracted crystallisation histories for simple plutonic systems are inconsistent with generalised thermal constraints, which predict cooling below the solidus within <1 myr. Consequently, we conclude that the SPS granitoids sampled in this study were not emplaced rapidly but incrementally over extended time periods. Zircon Th/U and Zr/Hf ratios are positively correlated with crystallisation temperatures, consistent with crystallisation from evolving melts. However, highly variable trace element concentrations, along with temperature reversals are indicative of complex crystallisation histories involving continuous fractional crystallisation repeatedly punctuated by hotter, more mafic magma recharge. Normalised abundances of the redox-sensitive elements Eu and Ce in zircon vary systematically with degrees of whole rock differentiation, pointing to evolutionary trends in magmatic oxidation states coupled with feldspar crystallisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ballard JR, Palin JM, Williams IR, Campbell IH (2001) Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit in northern Chile by ELA-ICPMS. Geology 29:383–386

    Article  Google Scholar 

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364

    Article  Google Scholar 

  • Bateman R (1995) The interplay between crystallisation, replenishment, and hybridization in large felsic magma chambers. Earth Sci Rev 39:91–106

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Aleinikoff JN, Davis DW, Korsch RJ, Foudoulis C (2003) TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chem Geol 200:155–170

    Article  Google Scholar 

  • Blundy J, Wood B (1994) Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372:452–454

    Article  Google Scholar 

  • Bolhar R, Whitehouse MJ, Weaver SD, Cole JW (2006) Geochemical variability of zircons from the Cretaceous Separation Point Batholith (New Zealand)—clues to sources and igneous processes. Geochim Cosmochim Acta 70(18):A57–A57

    Article  Google Scholar 

  • Bolhar R, Weaver SD, Whitehouse MJ, Palin JM, Woodhead JD, Cole JW (2008) Sources and evolution of arc magmas inferred from coupled O- and Hf-isotope systematics of plutonic zircons from the Cretaceous Separation Point Suite (New Zealand). Earth Planet Sci Lett (accepted)

  • Boynton WV (1984) Geochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

  • Bradshaw JD (1989) Cretaceous geotectonic pattern in the New Zealand region. Tectonics 8:803–820

    Article  Google Scholar 

  • Cavosie AJ, Valley JW, Wilde SA, EIMF (2006) Correlated microanalysis of zircon: Trace element, δ18 O, and U–Th–Pb isotopic constraints on the igneous origin of complex >3900 Ma detrital grains. Geochim Cosmochim Acta 70:5601–5616

    Article  Google Scholar 

  • Charlier BLA, Wilson CJN, Lowenstern JB, Blake S, Calsteren PWV, Davidson JP (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. J Petrol 46:3–32

    Article  Google Scholar 

  • Coleman DS, Gray W, Glazner AF (2004) Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology 32:433–436

    Article  Google Scholar 

  • Compston W, Williams IS, Meyer C (1984) U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. J Geophys Res 89(suppl):B525–B524

    Article  Google Scholar 

  • Davidson JP, Tepley III F, Knesel KM (1998) Crystal isotope stratigraphy: a method for constraining magma differentiation pathways. EOS 79:185, 189, 193

  • Davidson JP, Tepley III F, Palacz Z, Meffan-Main S (2001) Magma recharge, contamination and residence times revealed by in situ laser ablation analysis of feldspar in volcanic rocks. Earth Planet Sci Lett 184:427–442

    Article  Google Scholar 

  • Duffield WA, Ruiz J (1992) Compositional gradients in large volume reservoirs of silicic magma as evidenced by ignimbrites versus Taylor Creek Rhyolite lava domes. Contrib Mineral Petrol 110:192–210

    Article  Google Scholar 

  • Elburg MA (1996) U–Pb ages and morphologies of zircon in microgranitoid enclaves and peraluminous host granite: evidence for magma mingling. Contrib Mineral Petrol 123:177–189

    Article  Google Scholar 

  • Evans OC, Hanson GN (1993) Accessory-mineral fractionation of rare-earth element (REE) abundances in granitoid rocks. Chem Geol 110:69–93

    Article  Google Scholar 

  • Ferry JM, Watson EB (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154(4):429–437

    Article  Google Scholar 

  • Francalanci L, Davies GR, Lustenhouwer W, Tommasini S, Mason PRD, Conticelli S (2005) Intra-grain Sr isotope evidence for crystal recycling and multiple magma reservoirs in the recent activity of stromboli volcano, southern Italy. J Petrol 46:1997–2021

    Article  Google Scholar 

  • Gagnevin D, Daly JS, Waight TE, Morgan D, Poli G (2005) Pb isotopic zoning of K-feldspar megacrysts determined by Laser Ablation Multi-Collector ICP-MS: insights into granite petrogenesis. Geochim Cosmochim Acta 69:1899–1915

    Article  Google Scholar 

  • Gibson GM, Ireland TR (1995) Granulite formation during continental extension in Fiordland, New Zealand. Nature 375:479–482

    Article  Google Scholar 

  • Gibson GM, McDougall I, Ireland T (1988) Age constraints on metamorphism and the development of a metamorphic core complex in Fiordland, southern New Zealand. Geology 16:405–408

    Article  Google Scholar 

  • Glazner AF, Bartley JM, Coleman DS, Gray W, Taylor RZ (2004) Are plutons assembled over millions of years by amalgamation from small magma chambers? GSA Today 14:4–11

    Article  Google Scholar 

  • Griffin WL, Wang X, Jackson SE, Pearson NJ, O’Reilly SY, Xu XS, Zhou XM (2002) Zircon chemistry and magma mixing, SE China: in-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61(3–4):237–269

    Article  Google Scholar 

  • Harrison TM, McDougall I (1980) Investigation of an intrusive contact, northwest Nelson, New Zealand—1. Thermal, chronological and isotopic constraints. Geochim Cosmochim Acta 44:1985–2003

    Article  Google Scholar 

  • Harrison TM, Watson EB (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib Mineral Petrol 84:66–72

    Article  Google Scholar 

  • Hawkesworth CJ, Kemp AIS (2006) Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol 226(3–4):144–162

    Article  Google Scholar 

  • Hollis JA, Clarke GL, Klepeis KA, Daczko NR, Ireland TR (2004) The regional significance of Cretaceous magmatism and metamorphism in Fiordland, New Zealand, from U–Pb zircon geochronology. J Metamorph Geol 22:607–627

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69(3):637–648

    Article  Google Scholar 

  • Hoskin PWO, Black LP (2000) Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol 18(4):423–439

    Article  Google Scholar 

  • Hoskin PWO, Ireland TR (2000) Rare earth element chemistry of zircon and its use as a provenance indicator. Geology 28(7):627–630

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar JM, Hoskin PWO (eds) Zircon Reviews in Mineralogy and Geochemistry, vol 53. Mineralogical Society of America, Washington, pp 27–62

  • Hoskin PWO, Kinny PD, Wyborn D, Chappell BW (2000) Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach. J Petrol 41(9):1365–1396

    Article  Google Scholar 

  • Ireland TR (1992) Crustal evolution of New Zealand: evidence from age distributions of detrital zircon in Western Province paragneisses and Torlesse Greywacke. Geochim Cosmochim Acta 56:911–920

    Article  Google Scholar 

  • Jongens R, Bradshaw JD, Fowler A (2003) The Ballon Melange, northwest Nelson: origin, structure, and emplacement. NZ J Geol Geophys 46:437–448

    Google Scholar 

  • Keay S, Steele D, Compston W (1999) Identifying granite sources by SHRIMP U–Pb zircon geochronology: an application to the Lachlan foldbelt. Contrib Mineral Petrol 137(4):323–341

    Article  Google Scholar 

  • Kemp AIS, Whitehouse MJ, Hawkesworth CJ, Alarcon MK (2005a) A zircon U–Pb study of metaluminous (I-type) granites of the Lachlan Fold Belt, southeastern Australia: implications for the high/low temperature classification and magma differentiation processes. Contrib Mineral Petrol 150(2):230–249

    Article  Google Scholar 

  • Kemp AIS, Wormald RJ, Whitehouse MJ, Price RC (2005b) Hf isotopes in zircon reveal contrasting sources and crystallisation histories for alkaline to peralkaline granites of Temora, southeastern Australia. Geology 33:797–800

    Article  Google Scholar 

  • Kimbrough DL, Tulloch AJ, Geary E, Coombs DS, Landis CA (1993) Isotopic ages from the Nelson region of South Island, New Zealand; crustal structure and the definition of the Median Tectonic Zone. Tectonophysics 225:443–448

    Article  Google Scholar 

  • Kimbrough DL, Tulloch AJ, Coombs DS, Landis CA, Johnston MR, Mattinson JM (1994) Uranium-lead zircon ages from the Median Tectonic Zone, South Island, New Zealand. NZ J Geol Geophys 37:393–419

    Google Scholar 

  • Knesel KM, Davidson JP, Duffield WA (1999) Evolution of silicic magma through assimilation ans subsequent recharge: evidence from Sr isotopes in sanidine phenocrysts, Taylor Creek Rhyolite, NM. J Petrol 40:773–786

    Article  Google Scholar 

  • Kosler J, Fonneland H, Sylvester P, Tubrett M, Pedersen RB (2002) U–Pb dating of detrital zircons for sediment provenance studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem Geol 182(2–4):605–618

    Article  Google Scholar 

  • Lowery-Claiborne L, Miller CF, Walker N, Wooden JL, Mazdab FK, Bea F (2007) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: an example from the Spirit Mountain Batholith, Nevada. Mineral Mag 70:517–543

    Article  Google Scholar 

  • Maas R, Kinny PD, Williams IR, Froude DO, Compston W (1992) The Earth’s oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mount Narryer and Jack Hills, Western Australia. Geochim Cosmochim Acta 56:1281–1300

    Article  Google Scholar 

  • Maas R, Nicholls IA, Greig A, Nemchin A (2001) U–Pb zircon studies of mid-crustal metasedimentary enclaves from the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia. J Petrol 42(8):1429–1448

    Article  Google Scholar 

  • Mahood G, Hildreth W (1983) Large partition coefficients for trace elements in high-silica rhyolites. Geochim Cosmochim Acta 47:11–30

    Article  Google Scholar 

  • Mattinson JL, Kimbrough DL, Bradshaw JY (1986) Western Fiordland orthogneiss: Early Cretaceous arc magmatism and granultie facies metamorphism, New Zealand. Contrib Mineral Petrol 92:383–392

    Article  Google Scholar 

  • Matzel JEP, Bowring SA, Miller RB (2006) Time scale of pluton construction at differing crustal levels: examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington. Geol Soc Am Bull 118:1412–1430

    Article  Google Scholar 

  • Miller JS, Wooden JL (2004) Residence, resorption and recycling of zircons in Devils Kitchen Rhyolite, Coso Volcanic Field, California. J Petrol 45:2155–2170

    Article  Google Scholar 

  • Mortimer N, Gans P, Calvert A, Walker N (1999) Geology and thermochronometry of the east edge of the Median Batholith (Median Tectonic Zone): a new perspective on Permian to Cretaceous crustal growth of New Zealand. Isl Arc 8:404–425

    Article  Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD, Bradshaw JD (1994) Ion microprobe U–Pb zircon geochronology of granitic magmatism in the Western Province of the South-Island, New-Zealand. Chem Geol 113(1–2):171–189

    Article  Google Scholar 

  • Muir RJ, Weaver SD, Bradshaw JD, Eby GN, Evans JA (1995) The Cretaceous Separation Point Batholith, New-Zealand—granitoid magmas formed by melting of mafic lithosphere. J Geol Soc 152:689–701

    Article  Google Scholar 

  • Muir RJ, IrelandTR, Weaver SD, Bradshaw JD (1996) Ion microprobe dating of Paleozoic granitoids: Devonian magmatism in New Zealand and correlations with Australia and Antarctica. Chem Geol 127:191–210

    Article  Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD, Bradshaw JD, Evans JA, Eby GN, Shelley D (1998) Geochronology and geochemistry of a Mesozoic magmatic arc system, Fiordland, New Zealand. J Geol Soc 155:1037–1052

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newsl 21:115–144

    Article  Google Scholar 

  • Ramos FC, Reid MR (2005) Distinguishing melting of heterogeneous mantle sources from crustal contamination: insights from Sr isotopes at the phenocryst scale, Pisgah Crater, California. J Petrol 46:999–1012

    Article  Google Scholar 

  • Robinson DM, Miller CF (1999) Record of magma chambe processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada. Am Mineral 84:1346–1353

    Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chem Geol 184(1–2):123–138

    Article  Google Scholar 

  • Sawka WN (1988) REE and trace element variations in accessory minerals and hornblende from the strongly zoned McMurry Meadows Pluton, California. Trans R Soc Edinb Earth Sci 79:157–168

    Google Scholar 

  • Scott JM, Cooper AF (2006) Early Cretaceous extensional exhumation of the lower crust of a magmatic arc: evidence from the Mount Irene Shear Zone, Fiordland, New Zealand. Tectonics 25:TC3018. doi:10.1029/2005TC001890

    Article  Google Scholar 

  • Stern RA, Amelin Y (2003) Assessment of errors in SIMS zircon U–Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chem Geol 197:111–142

    Article  Google Scholar 

  • Tepley III F, Davidson JP, Clynne MA (1999) Magmatic interactions as recorded in plagioclase phenocrysts of Chaos Crags, Lassen Volcanic Center, California. J Petrol 40:787–806

    Article  Google Scholar 

  • Tulloch AJ, Challis GA (2000) Emplacement depths of Paleozoic–Mesozoic plutons from western New Zealand estimated by hornblende-Al geobarometry. NZ J Geol Geophys 43:555–567

    Google Scholar 

  • Tulloch AJ, Kimbrough DL (2003) Paired plutonic belts in convergent margins and the development of high Sr/Y: Peninsular Ranges batholith of Baja-California and Median batholith of New Zealand. Geol Soc Am Bull Spec Pap 374:275–295

    Google Scholar 

  • Waight TE, Weaver SD, Muir RJ (1998) Mid-Cretaceous granitic magmatism during the transition from subduction to extension in southern New Zealand: a chemical and tectonic synthesis. Lithos 45(1–4):469–482

    Article  Google Scholar 

  • Wandres AM, Bradshaw JD (2005) New Zealand tectonostratigraphy and implications from conglomeratic rocks for the configuration of the SW Pacific margin of Gondwana. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrance processes at the margins of Gondwana, vol 246. The Geological Society of London, Special Publication, pp 179–216

  • Wark DA, Miller CF (1993) Accessory mineral behaviour during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, southeastern California, USA. Chem Geol 110:49–67

    Article  Google Scholar 

  • Watson EB, Harrison TM (2005) Zircon thermometer reveals minimum melting conditions on earliest. Earth Sci 308:841–844

    Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallisation thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Whitehouse MJ, Kamber BS (2005) Assigning dates to thin gneissic veins in high-grade metamorphic terranes: a cautionary tale from Akilia, southwest Greenland. J Petrol 46(2):291–318

    Article  Google Scholar 

  • Whitehouse MJ, Platt JP (2003) Dating high-grade metamorphism—constraints from rare-earth elements in zircon and garnet. Contrib Mineral Petrol 145(1):61–74

    Article  Google Scholar 

  • Wiebe RA (1993) The Pleasant Bay layered gabbro-diorite, coastal Maine; ponding and crystallisation of basaltic injections into a silicic magma chamber. J Petrol 34:461–489

    Google Scholar 

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons; implications for the emplacement and crystallisation of granitic magma. J Struct Geol 20:1273–1289

    Article  Google Scholar 

  • Wiebe RA, Smith D, Sturm M, King EM, Seckler MS (1997) Enclaves in the Cadillac Mountain Granite (Coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–423

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Vonquadt A, Roddick JC, Speigel W (1995) 3 Natural zircon standards for U–Th–Pb, Lu–Hf, trace-element and REE analyses. Geostand Newsl 19(1):1–23

    Article  Google Scholar 

  • Wiedenbeck M, Hanchar JM, Peck WH, Sylvester P, Valley J, Whitehouse M, Kronz A, Morishita Y, Nasdala L et al (2004) Further characterisation of the 91500 zircon crystal. Geostandards Geoanalytical Res 28:9–39

    Article  Google Scholar 

  • Williams IS, Chappell BW, Chen YD, Crook KAW (1992) Inherited and detrital zircons—vital clues to the granite protoliths and early igneous history of southeast Australia. Trans R Soc Edinb Earth Sci 83:503

    Google Scholar 

  • Wysoczanski RJ, Gibson GM, Ireland TR (1997) Detrital zircon age patterns and provenance in Late Paleozoic to Early Mesozoic New Zealand; terranes and development of the Paleo-Pacific Gondwana margin. Geology 25:939–942

    Article  Google Scholar 

  • Zartman RE, Richardson SH (2005) Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean. Chem Geol 220(3–4):263–283

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded through a Marsden grant to JWC and SDW and a University of Otago Research Grant to JMP. RB acknowledges a postdoctoral fellowship from the University of Canterbury. Charlotte Allen and Mike Shelley (Australian National University) and Michelle Herd, Rob Spiers, Jennifer Jackson, Kerry Swanson and Sacha Baldwin-Cunningham (University of Canterbury) are thanked for assistance with ICPMS analysis and mineral separation. Constructive and detailed criticism by two anonymous reviewers as well as editorial input from Bill Collins helped to improve the clarity of this paper. Anekant Wandres provided an electronic copy of the geological map and helpful advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve D. Weaver.

Additional information

Communicated by T.L. Grove.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolhar, R., Weaver, S.D., Palin, J.M. et al. Systematics of zircon crystallisation in the Cretaceous Separation Point Suite, New Zealand, using U/Pb isotopes, REE and Ti geothermometry. Contrib Mineral Petrol 156, 133–160 (2008). https://doi.org/10.1007/s00410-007-0278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-007-0278-5

Keywords

Navigation