Skip to main content

Advertisement

Log in

The role of slab melting in the petrogenesis of high-Mg andesites: evidence from Simbo Volcano, Solomon Islands

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The petrogenesis of high-Mg andesites (HMA) in subduction zones involves shallow melting of refractory mantle sources or, alternatively, the interaction of ascending slab-derived melts with mantle peridotite. To unravel the petrogenesis of HMA, we report major, trace element and Sr–Nd–Hf–Pb isotope data for a newly found occurrence of HMA in the New Georgia group, Solomon Islands, SW-Pacific. Volcanism in the Solomon Islands was initiated by subduction of the Pacific plate beneath the Indian–Australian plate until a reversal of subduction polarity occurred ca. 10 Ma ago. Currently, the Indian–Australian plate is subducted northeastwards along the San Cristobál trench, forming the younger and still active southwestern Solomon island arc. However, a fossil slab of Pacific crust is still present beneath the arc. The edifice of the active volcano Simbo is located directly in the San Cristobál trench on top of the subducting Indian–Australian plate. Simbo Island lies on top of a strike-slip fault of the adjacent Woodlark spreading centre that is subducted beneath the Pacific plate. Geochemical and petrological compositions of volcanic rocks from Simbo are in marked contrast to those of volcanic rocks from islands north of the trench (mostly arc basalts). Simbo-type rocks are opx-bearing HMA, displaying 60–62 wt% SiO2 but rather primitive Mg–Ni–Cr characteristics with 4–6 wt% MgO, up to 65 ppm Ni, up to 264 ppm Cr and Mg# from 67 to 75. The compositions of the Simbo andesites are explained by a binary mixture of silicic and basaltic melts. Relict olivine phenocrysts with Fo88–90 and reaction-rims of opx also support a mixing model. The basaltic endmember is similar to back-arc basalts from the Woodlark Ridge. A slab melt affinity of the silicic mixing component is indicated by Gd(N)/Yb(N) of up to 2.2 that is higher if compared to MORB and other arc basalts from the Solomon Islands. 87Sr/86Sr, ɛNd and ɛHf values in the analysed rocks range from 0.7035 to 0.7040, +6.4 to +7.9 and +12 to +14.4, respectively. These values reveal the presence of the Indian–Australian mantle domain beneath Simbo (i.e. the Indian–Australian plate) and also beneath all other volcanic islands of the New Georgia group, which are located north of the San Cristobál trench. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb values (18.43–18.52, 15.49–15.55 and 18.13–18.34, respectively) confirm the presence of slab melts from the subducted Pacific plate beneath southern Simbo where the highest Gd(N)/Yb(N) ratios are reported. A spatial shift towards an Indian–Australian slab signature is observed when approaching the active San Cristobál trench on northern Simbo, reflecting the decreasing influence of slab melts from the old subducted Pacific plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abraham DA, Backisapa M, Booth DJ, Dunkley PN, Hughes GW, Langford RL, Philip PR, Ridgway J, Smith A, Strange PJ (1987) New Georgia group geological map sheet, 1:250.000. Geological Survey Division, Ministry of Natural Resources, Honiara, Solomon Islands

  • Abratis M, Wörner G (2001) Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 29:127–130

    Article  Google Scholar 

  • Beccaluva L, Serri G (1988) Boninitic and low-Ti subduction-related lavas from intraoceanic arc backarc systems and low-Ti ophiolites—a reappraisal of their petrogenesis and original tectonic setting. Tectonophysics 146:291–315

    Article  Google Scholar 

  • Bédard JH (1999) Petrogenesis of boninites from the Betts Cove Ophiolite, Newfoundland, Canada: identification of subducted source components. J Petrol 40:1853–1889

    Article  Google Scholar 

  • Bindeman IN, Eiler JM, Yogodzinski GM, Tatsumi Y, Stern CR, Grove TL, Portnyagin M, Hoernle K, Danyushevsky LV (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth Planet Sci Lett 235:480–496

    Article  Google Scholar 

  • Blichert-Toft J, Albaréde F (1997) The Lu–Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth Planet Sci Lett 148:243–258

    Article  Google Scholar 

  • Bloomer SH, Hawkins JW (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana trench. Contrib Mineral Petrol 97:361–377

    Article  Google Scholar 

  • Boynton WV (1984) Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 89–94

    Google Scholar 

  • Brown GM, Schairer JF (1968) Melting relations of some calcalkaline volcanic rocks. Carnegie Inst Wash Yearb 66:460–467

    Google Scholar 

  • Cameron WE, McCulloch MT, Walker DA (1983) Boninite petrogenesis: chemical and Sr–Nd isotopic constraints. Earth Planet Sci Lett 65:75–89

    Article  Google Scholar 

  • Chauvel C, Goldstein SL, Hofmann AW (1995) Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chem Geol 126:65–75

    Article  Google Scholar 

  • Cowley S, Mann P, Coffin MF, Shipley T (2004) Oligocene to recent tectonic history of the central Solomon intra-arc basin as determined from marine seismic reflection data and compilation of onland geology. Tectonophysics 389:267–307

    Article  Google Scholar 

  • Crawford AJ, Beccaluva L, Serri G (1981) Tectono-magmatic evolution of the west Philippine-Mariana region and the origin of boninites. Earth Planet Sci Lett 54:346–356

    Article  Google Scholar 

  • Crawford AJ, Falloon TJ, Eggins S (1987) The origin of high-alumina basalts. Contrib Mineral Petrol 97:417–430

    Article  Google Scholar 

  • Crawford AJ, Falloon TJ, Green DH (1989) Classification, petrogenesis and tectonic setting of boninites. In: Crawford AJ (ed) Boninites and related rocks. Unwin Hyman, Boston, pp 2–49

    Google Scholar 

  • Dallwitz WB, Green DH, Thompson JE (1966) Clinoenstatite in a volcanic rock from the Cape Vogel area, Papua. J Petrol 7:75–403

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1993) Mount St. Helens—potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21:574–550

    Article  Google Scholar 

  • Dietrich V, Emmermann R, Oberhänsli R, Puchelt H (1978) Geochemistry of basaltic and gabbroic rocks from the West Mariana basin and the Mariana trench. Earth Planet Sci Lett 39:127–144

    Article  Google Scholar 

  • Gill J (1981) Orogenic andesites and plate tectonics. Springer, Berlin Heidelberg New York, p 390

    Google Scholar 

  • Gill J, Compston W (1973) Strontium isotopes in island arc volcanic rocks. In: Coleman PJ (ed) The western Pacific: island arcs, marginal seas. Geochemistry, pp 83–494

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newsl 18:1–158

    Google Scholar 

  • Grove TL, Parman SW, Bowring SA, Price RC, Baker MB (2002) The role of an H2O-rich component in the generation of primitive basaltic andesites and andesites from the Mt. Shasta region, N. California. Contrib Mineral Petrol 142:375–396

    Google Scholar 

  • Hart SR, Dunn T (1993) Experimental cpx/melt partitioning of 24 trace elements. Contrib Mineral Petrol 113:1–8

    Article  Google Scholar 

  • Hauri EH, Wagner TP, Grove TL (1994) Experimental and natural partitioning of Th, U, Pb and other trace elements between garnet, clinopyroxene and basaltic melts. Chem Geol 117:149–166

    Article  Google Scholar 

  • Hawkins J (1995) Evolution of the Lau Basin—insights from ODP Leg 135—active margins and marginal basins of the western Pacific. Geophys Monogr 88:125–173

    Google Scholar 

  • Heinrichs H, Herrmann AG (1990) Praktikum der analytischen Geochemie. Springer, Berlin Heidelberg New York, p 667

    Google Scholar 

  • Hickey RL, Frey FA (1982) Geochemical characteristics of boninite series volcanics: implications for their source. Geochim Cosmochim Acta 46:2099–2115

    Article  Google Scholar 

  • Hickey-Vargas R, Hergt JM, Spadea P (1995) The Indian ocean-type isotopic signature in western Pacific marginal basins: origin and significance. In: Taylor B, Natland JP (eds) Active margins and marginal basins of the Western Pacific. Geophys Monogr Am Geophys Union, vol 88, pp 175–197

  • Hofmann AW (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385:219–229

    Article  Google Scholar 

  • Hussong DM, Wipperman LK, Kroenke LW (1979) The crustal structure of the Ontong Java and Manihiki oceanic plateaus. J Geophys Res 84:6003–6010

    Article  Google Scholar 

  • Ionov DA, Griffin WL, O’Reilly SY (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem Geol 141:153–184

    Article  Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1980) Sm–Nd isotopic evolution of chondrites. Earth Planet Sci Lett 50:139–155

    Article  Google Scholar 

  • Jenner GA (1981) Geochemistry of high-Mg andesites from Cape Vogel, Papua New Guinea. Chem Geol 33:307–332

    Article  Google Scholar 

  • Johnson RW, Jaques AL, Langmuir CH, Perfit MR, Staudigel H, Dunkley PN, Chappell BW, Taylor SR, Baekisapa M (1987) Ridge subduction and forearc volcanism: Petrology and geochemistry of rocks dredged from the western Solomon arc and Woodlark basin. Circum-Pac Counc Energy Miner Res 7:155–226

    Google Scholar 

  • Kamenetsky VS, Crawford AJ, Eggins S, Mühe R (1997) Phenocryst and melt inclusion chemistry of near-axis seamounts, Valu Fa Ridge, Lau Basin: insight into mantle wedge melting and the addition of subduction components. Earth Planet Sci Lett 151:205–223

    Article  Google Scholar 

  • Kamenetsky VS, Sobolev AV, Eggins SM, Crawford AJ, Arculus RJ (2002) Olivine-enriched melt inclusions in chromites from low-Ca boninites, Cape Vogel, Papua New Guinea: evidence for ultramafic primary magma, refractory mantle source and enriched components. Chem Geol 183:287–303

    Article  Google Scholar 

  • Kay RW (1978) Aleutian magnesian andesites: melts from subducted Pacific ocean crust. J Volcanol Geotherm Res 4:117–132

    Article  Google Scholar 

  • Kay RW (1980) Volcanic arc magmas: implications of a melting-mixing model for element recycling in the crust–upper mantle system. J Geol 88:497–522

    Article  Google Scholar 

  • Kelemen PB, Shimizu N, Dunn T (1993) Relative depletion of niobium in some arc magmas and the continental crust—partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet Sci Lett 120:111–134

    Article  Google Scholar 

  • Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR (2003) Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Eiler JM (ed) Inside the subduction factory. AGU, Washington, pp 293–311

    Google Scholar 

  • Kempton PD, Pearce JA, Barry TL (2002) Sr–Nd–Pb–Hf isotope results from ODP Leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochem Geophys Geosyst 3, paper no. 10.1029/2002GC000320

  • Kepezhinskas PK, Defant MJ, Drummond MS (1995) Na metasomatism in the island-arc mantle by slab melt–peridotite interaction: evidence from mantle xenoliths in the North Kamchatka arc. J Petrol 36:1505–1527

    Google Scholar 

  • Kessel R, Schmidt MW, Ulmer P, Pettke T (2005) Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Article  Google Scholar 

  • Kikuchi Y (1890) On pyroxene components in certain volcanic rocks from bonin island. J Coll Sci Imp Univ Jpn 3:67–89

    Google Scholar 

  • Klemme S (2004) The influence of Cr on the garnet-spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–646

    Article  Google Scholar 

  • Le Bas MJ (2000) IUGS reclassification of the high-Mg and picritic volcanic rocks. J Petrol 41:1467–1470

    Google Scholar 

  • Mann P (1997) Model for the formation of large transtensional basins in zones of tectonic escape. Geology 25:211–214

    Article  Google Scholar 

  • Mann P, Taira A (2004) Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 389:137–190

    Article  Google Scholar 

  • Mann P, Taylor WF, Lagoe MB, Quarles A, Burr G (1998) Accelerating late Quaternary uplift of the New Georgia Island group (Solomon Islands arc) in response to subduction of the recently active Woodlark spreading center and Coleman seamount. Tectonophysics 295:259–306

    Article  Google Scholar 

  • Marshak RS, Karig DE (1977) Triple junctions as a cause for anomalously near trench activity between the trench and volcanic arc. Geology 5:233–236

    Article  Google Scholar 

  • Martin H (1986) Effect of steeper Archaeach geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Article  Google Scholar 

  • Martin H, Moyen JF (2002) Secular changes in tonalite-trondhjemite-granodiorite composition as markers of the progressive cooling Earth. Geology 30:319–322

    Article  Google Scholar 

  • Maury RC, Sajona FG, Pubellier M, Bellon H, Defant MJ (1996) Fusion de la croÛte océanique dans les zones de subduction/collision récentes: l’exemple de Mindano (Philippines). Bull Soc Geol (Fr) 167:579–595

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Article  Google Scholar 

  • Meffre S, Aitchison JC, Crawford AJ (1996) Geochemical evolution and tectonic significance of boninites and tholeiites from the Koh ophiolite, New Caledonia. Tectonics 15:67–83

    Article  Google Scholar 

  • Miura S, Kodaira S, Nakanishi A, Tsuru T, Takahashi N, Hirata N, Kaneda Y (2003) Structural characteristics controlling the seismicity crustal structure of southern Japan trench fore-arc region, revealed by ocean bottom seismographic data. Tectonophysics 363:79–102

    Article  Google Scholar 

  • Monzier M, Danyushevsky LV, Crawford AJ, Bellon H, Cotten J (1993) High-Mg andesites from the southern termination of the New Hebrides island arc (SW Pacific). J Volcanol Geotherm Res 57:193–217

    Article  Google Scholar 

  • Münker C, Weyer S, Scherer E, Mezger K (2001) Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem Geophys Geosyst 2:2001GC000183

    Article  Google Scholar 

  • Peacock SM, Rushmer T, Thompson AB (1994) Partial melting of subducting oceanic crust. Earth Planet Sci Lett 121:227–244

    Article  Google Scholar 

  • Pearce JA, Kempton PD, Nowell GM, Noble SR (1999) Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. J Petrol 40:1579–1611

    Article  Google Scholar 

  • Peate DW, Pearce JA, Hawkesworth CJ, Colley H, Edwards CMH, Hirose K (1997) Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition. J Petrol 38:1331–1358

    Article  Google Scholar 

  • Perfit MR, Langmuir CH, Baekisapa M, Chappell BW, Johnson RW, Staudigel H, Taylor SR (1987) Geochemistry and petrology of volcanic rocks from the Woodlark basin: addressing questions of ridge subduction. Circum-Pac Counc Energy Miner Res 7:113–154

    Google Scholar 

  • Petersen J (1891) Der Boninit von Peel Island. Jahrb Hambg Wiss Anst 8:341–349

    Google Scholar 

  • Petterson MG, Babbs T, Neal CR, Mahoney JJ, Saunders AD, Duncan RA, Tolia D, Magu R, Qopoto C, Mahoa H, Natogga D (1999) Geological-tectonic framework of Solomon Islands, SW Pacific: crustal accretion and growth within an intra-oceanic setting. Tectonophysics 301:35–60

    Article  Google Scholar 

  • Rapp RP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. J Petrol 35:891–931

    Google Scholar 

  • Ringwood AE (1974) The petrological evolution of island arc systems. J Geol Soc Lond 130:183–204

    Google Scholar 

  • Rohrbach A, Schuth S, Ballhaus C, Münker C, Matveev S, Qopoto C (2005) Petrological constraints on the origin of arc picrites, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 149:685–698

    Article  Google Scholar 

  • Sajona FG (1995) Fusion de la croute océanique en contexte de subduction collision: géochimie, geochronology et pétrologie du magmatisme plioquaternaire de Mindano (Philippines). Unpublished thesis, Brest University, 223 pp

  • Schuth S, Rohrbach A, Münker C, Ballhaus C (2004) Geochemical constraints on the petrogenesis of arc picrites and basalts, New Georgia Group, Solomon Islands. Contrib Mineral Petrol 148:288–304

    Article  Google Scholar 

  • Sen C, Dunn T (1994) Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa – Implications for the origin of adakites. Contrib Mineral Petrol 117(4):394–409

    Article  Google Scholar 

  • Sobolev AV, Hofmann AW, Sobolev SV, Nikogosian TK (2005) An olivine-free mantle source of Hawaiian shield basalts. Nature 434:590–597

    Article  Google Scholar 

  • Stern CR, Kilian R (1996) Role of subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib Mineral Petrol 123:263–281

    Article  Google Scholar 

  • Sun S-S, Nesbitt RW (1978) Geochemical regularities and genetic significance of ophiolitic basalts. Geology 6:68–93

    Article  Google Scholar 

  • Tatsumi Y (1982) Origin of high-magnesian andesites in the Setouchi volcanic belt, southwest Japan, II. Melting phase relations at high pressures. Earth Planet Sci Lett 60:305–317

    Article  Google Scholar 

  • Tejada MLG, Mahoney JJ, Neal CR, Duncan RA, Petterson MG (2002) Basement geochemistry and geochronology of Central Malaita, Solomon Islands, with implications for the origin and evolution of the Ontong Java Plateau. J Petrol 43:449–484

    Article  Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofman AW (1996) Evaluation of a 202Pb–205Pb double spike for high-precision lead isotope analysis. In: Earth processes: reading the isotope code. Geophysical Monograph 95, pp 429–437

  • Walker DA, Cameron WE (1983) Boninite primary magmas: evidence from Cape Vogel Peninsula, PNG. Contrib Mineral Petrol 83:150–158

    Article  Google Scholar 

  • Woodhead JD, Eggins SM, Johnson RW (1998) Magma genesis in the New Britain island arc: further insights into melting and mass transfer processes. J Petrol 39:1641–1668

    Article  Google Scholar 

  • Woodhead JD, Hergt JM, Davidson JP, Eggins SM (2001) Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes. Earth Planet Sci Lett 192:331–346

    Article  Google Scholar 

  • Workman RK, Hart SR (2004) Major and trace element compositions of the depleted MORB mantle. Earth Planet Sci Lett 231:53–72

    Article  Google Scholar 

  • Yan CY, Kroenke LW (1993) A plate tectonic reconstruction of the Southwest Pacific, 0–100 Ma. In: Proceedings of ocean drilling project, Scientific results, pp 697–709

  • Yogodzinski GM (1995) Magnesian andesite in the western Aleutian Komandorsky region: implications for slab melting and processes in the mantle wedge. GSA Bull 7:505–519

    Article  Google Scholar 

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Wörner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 9:500–504

    Article  Google Scholar 

  • Yoneshima S, Mochizuki K, Araki E, Hino R, Shinohara M, Suyehiro K (2005) Subduction of the Woodlark Basin at the New Britain Trench, Solomon Islands region. Tectonophysics 397:225–239

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the DFG (German Research Foundation, project MU 1406/2–3). Heidi Baier and Jasper Berndt are thanked for lab support. We thank Radegund Hoffbauer from Universität Bonn for XRF analyses and Dieter Garbe-Schönberg from Universität Kiel for quadrupole ICP-MS analyses. Andrew Mason and Stanley Basi provided support in organizing the field campaign in the Solomon Islands. Journal reviews by two anonymous reviewers helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. König.

Additional information

Communicated by J. Hoefs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, S., Schuth, S., Münker, C. et al. The role of slab melting in the petrogenesis of high-Mg andesites: evidence from Simbo Volcano, Solomon Islands. Contrib Mineral Petrol 153, 85–103 (2007). https://doi.org/10.1007/s00410-006-0136-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-006-0136-x

Keywords

Navigation