Skip to main content
Log in

Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Rutile is an important carrier of high field strength elements (HFSE; Zr, Nb, Mo, Sn, Sb, Hf, Ta, W). Its Zr content is buffered in systems with quartz and zircon as coexisting phases. The effects of temperature (T) and pressure (P) on the Zr content in rutile have been empirically calibrated in this study by analysing rutile–quartz–zircon assemblages of 31 metamorphic rocks spanning a T range from 430 to 1,100°C. Electron microprobe measurements show that Zr concentrations in rutile vary from 30 to 8,400 ppm across this temperature interval, correlating closely with metamorphic grade. The following thermometer has been formulated based on the maximum Zr contents of rutile included in garnet and pyroxene:

$$ T{\text{(in}}\;^ \circ {\text{C) = 127}}{\text{.8}}\, \times {\text{ln (Zr}}\,{\text{in}}\,{\text{ppm)}}\, - {\text{10}} $$

No pressure dependence was observed. An uncertainty in absolute T of ±50°C is inherited from T estimates of the natural samples used. A close approach to equilibrium of Zr distribution between zircon and rutile is suggested based on the high degree of reproducability of Zr contents in rutiles from different rock types from the same locality. At a given locality, the calculated range in T is mostly ±10°C, indicating the geological and analytical precision of the rutile thermometer. Possible applications of this new geothermometer are discussed covering the fields of ultrahigh temperature (UHT) granulites, sedimentary provenance studies and metamorphic field gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banfield JF, Veblen DR (1991) The structure and origin of Fe-bearing platelets in metamorphic rutile. Am Miner 76:113–127

    CAS  Google Scholar 

  • Bastin GF, Loo FJJ, Vosters PJC, Vrolijk JWGA (1984) An iterative procedure for the correction of secondary fluorescence effects in electron-probe microanalysis near phase boundaries. Spectrochim Acta 39B:1517–1522

    Article  Google Scholar 

  • Bingen B, Austrheim H, Whitehouse M (2001) Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of Western Norway and implications for zircon geochronology. J Petrol 42:355–375

    Article  CAS  Google Scholar 

  • Black LP, Fitzgerald JD, Harley SL (1984) Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contrib Mineral Petrol 85:141–148

    CAS  Google Scholar 

  • Brandt S, Klemd R, Okrusch M (2003) Ultrahigh-temperature metamorphism and multistage evolution of garnet-orthopyroxene granulites from the Proterozoic Epupa complex, NW Namibia. J Petrol 44:1121–1144

    Article  CAS  Google Scholar 

  • Brouwer FM (2000) Thermal evolution of high-pressure metamorphic rocks in the Alps. PhD Thesis, Utrecht University, Geologica Ultraiectina, vol 199:1–221

  • Bucher K, Frey M (2002) Petrogenesis of metamorphic rocks. Springer, Berlin Heidelberg New York, p 1–341

    Google Scholar 

  • Carlson WD (2002) Scales of disequilibrium and rates of equilibration during metamorphism. Am Miner 87:185–204

    CAS  Google Scholar 

  • Cherniak DJ (1998) Pb diffusion in clinopyroxene. Chem Geol 150:105–117

    Article  CAS  Google Scholar 

  • Cherniak DJ (2000) Pb diffusion in rutile. Contrib Mineral Petrol 139:198–207

    CAS  Google Scholar 

  • Cooke RA, O’Brien PJ (2001) Resolving the relationship between high P–T rocks and gneisses in collisional terranes: an example from the Gföhl gneiss-granulite association in the Moldanubian Zone, Austria. Lithos 58:33–54

    Article  CAS  Google Scholar 

  • Dahl PS (1997) A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology. Earth Planet Sci Lett 150:277–290

    Article  CAS  Google Scholar 

  • Degeling H, Eggins S, Ellis DJ (2001) Zr budgets for metamorphic reactions, and the formation of zircon from garnet breakdown. Mineral Mag 65:749–758

    Article  CAS  Google Scholar 

  • Degeling H, Ellis D, Williams IS (2002) Textural and isotopic constraint on zircon formation during cooling of the Napier Complex, East Antarctica. In: 18th IMA. Programme with abstracts, p 235

  • Ferry JM (2000) Patterns of mineral occurrence in metamorphic rocks. Am Miner 85:1573–1588

    CAS  Google Scholar 

  • Fett A (1995) Elementverteilung zwischen Granat, Klinopyroxen und Rutil in Eklogit- Experiment und Natur. Dissertation, Universität Mainz pp 1–227

  • Fitzsimons ICW, Harley SL (1994) The influence of retrograde cation exchange on granulite P–T estimates and a convergence technique for the recovery of peak metamorphic conditions. J Petrol 35:543–576

    CAS  Google Scholar 

  • Force ER (1991) Geology of titanium-mineral deposits. Geol Soc Am Spec Pap 259. Boulder, p 1–112

  • Fraser G, Ellis G, Eggins S (1997) Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25:607–610

    Article  CAS  Google Scholar 

  • Frost BR, Chamberlain KR, Schumacher JC (2001) Sphene (titanite): phase relations and role as a geochronometer. Chem Geol 172:131–148

    Article  CAS  Google Scholar 

  • Grew ES (1986) Petrogenesis of kornerupine at Waldheim (Sachsen), German Democratic Republic. Z geol Wiss 14:525–558

    CAS  Google Scholar 

  • Harley SL (1989) The origins of granulites: a metamorphic perspective. Geol Mag 126:215–247

    CAS  Google Scholar 

  • Harley SL (1998) On the occurrence and characterization of ultrahigh-temperature crustal metamorphism. In: Treloar PJ, O’Brien PJ (eds) What drives metamorphism and metamorphic reactions? vol 138. Geol Soc Lond, pp 81–107

  • Harley SL, Motoyoshi Y (2000) Al zoning in orthopyroxene in a sapphirine quartzite: evidence for >1120°C UHT metamorphism in the Napier Complex, Antarctica, and implications for the entropy of sapphirine. Contrib Mineral Petrol 138:293–307

    Article  CAS  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    CAS  Google Scholar 

  • Hermann J (2002) Allanite: thorium and light rare earth element carrier in subducted crust. Chem Geol 192:289–306

    Article  CAS  Google Scholar 

  • Hermann J, Rubatto D (2003) Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. J Metamorph Geol 21:833–852

    CAS  Google Scholar 

  • Hokada T (2001) Feldspar thermometry in ultrahigh-temperature metamorphic rocks: evidence of crustal metamorphism attaining ~1100° C in the Archean Napier Complex, East Antarctica. Am Mineral 86:932–938

    CAS  Google Scholar 

  • Klemd R, Bröcker M (1999) Fluid influence on mineral reactions in ultrahigh-pressure granulites: a case study in the Snieznik Mts. (West Sudetes, Poland). Contrib Mineral Petrol 136:358–373

    Article  CAS  Google Scholar 

  • Klemme S, Blundy JD, Wood BJ (2002) Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochim Cosmochim Acta 66:3109–3123

    Article  CAS  Google Scholar 

  • Marschall HR, Kalt A, Hanel M (2003) P–T evolution of a Variscan lower-crustal segment: a study of granulites from the Schwarzwald, Germany. J Petrol 44:227–253

    Article  CAS  Google Scholar 

  • Massonne H-J (1998) A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and their metamorphic evolution. In: 7th International Kimberlite Conference, pp 533–539

  • Meyre C, De Capitani C, Zack T, Frey M (1999) Petrology of high-pressure metapelites from the Adula nappe (Central Alps, Switzerland). J Petrol 40:199–213

    Article  CAS  Google Scholar 

  • Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorph Geol 20:727–740

    Article  Google Scholar 

  • Montel JM, Kornprobst J, Vielzeuf D (2000) Preservation of old U-Th-Pb ages in shielded monazite: example from the Beni Bousera Hercynian kinzigites (Morocco). J Metamorph Geol 18:335–342

    Article  CAS  Google Scholar 

  • Moraes R, Brown M, Fuck RA, Camargo MA, Lima TM (2002) Characterization and P–T evolution of melt-bearing ultrahigh-temperature granulites: An example from the Anapolis-Itaucu complex of the Brasilia Fold Belt, Brazil. J Petrol 43:1673–1705

    Article  CAS  Google Scholar 

  • Moraes R, Peternel R, Trouw RAJ, Brown M, Piccoli P (2003) P–T path of a kyanite-K-feldspar (HP) granulite of the Andrelandia sequence, Brasilia Fold Belt, Brazil. GSA Annual Meeting

  • Morton AC, Hallsworth C (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29

    Article  CAS  Google Scholar 

  • Müller A, Wiedenbeck M, van den Kerkhof AM, Kronz A, Simon K (2003) Trace elements in quartz—a combined electron microprobe, secondary ion mass spectrometry, laser-ablation ICP-MS, and cathodoluminescence study. Eur J Mineral 15:747–763

    Article  Google Scholar 

  • Nagel T, de Capitani C, Frey M (2002) Isograds and P–T evolution in the eastern Lepontine Alps (Graubünden, Switzerland). J Metamorph Geol 20:309–324

    Article  CAS  Google Scholar 

  • Olker B, Altherr R, Paquin J (2003) Fast exhumation of the ultrahigh-pressure Alpe Arami garnet peridotite (Central Alps, Switzerland): constraints from geospeedometry and thermal modelling. J Metamorph Geol 21:395–402

    CAS  Google Scholar 

  • van Orman JA, Grove TL, Shimizu N, Layne GD (2002) Rare earth element diffusion in a natural pyrope single crystal at 2.8 GPa. Contrib Mineral Petrol 142:416–424

    Google Scholar 

  • Pattison DRM, Bégin NJ (1994) Zoning patterns in Orthopyroxene and Garnet in Granulites—implications for geothermometry. J Metamorph Geol 12:387–410

    CAS  Google Scholar 

  • Pattison DRM, Chacko T, Farquhar J, McFarlane CRM (2003) Temperatures of granulite-facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. J Petrol 44:867–900

    Article  CAS  Google Scholar 

  • Pyle JM, Spear FS, Rudnick RL, McDonough WF (2001) Monazite-xenotime-garnet equilibrium in metapelites and a new monazite-garnet thermometer. J Petrol 42:2083–2107

    Article  CAS  Google Scholar 

  • Rötzler J, Romer RL (2001) P–T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part I: petrology. J Petrol 42:1995–2013

    Article  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  CAS  Google Scholar 

  • Rubatto D, Hermann J (2003) Zircon formation during fluid circulation in eclogites (Monviso, Western Alps): implications for Zr and Hf budgets in subduction zones. Geochim Cosmochim Acta 67:2173–2187

    Article  CAS  Google Scholar 

  • Sasaki J, Peterson NL, Hoshino K (1985) Tracer impurity diffusion in single-crystal rutile (TiO2-x). J Phys Chem Solids 46:1267–1283

    Article  CAS  Google Scholar 

  • Saunders AD, Tarney J, Weaver SD (1980) Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth Planet Sci Lett 46:344–360

    Article  CAS  Google Scholar 

  • Sorensen SS (1988) Petrology of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, southern California: metasomatism and migmatization in a subduction zone metamorphic setting. J Metamorph Geol 6:405–435

    CAS  Google Scholar 

  • Sorensen SS, Barton MD (1987) Metasomatism and partial melting in a subduction complex—catalina schist, southern-california. Geology 15: 115–118

    CAS  Google Scholar 

  • Sorensen SS, Grossman JN (1989) Enrichment of trace elements in garnet amphibolites from a paleo-subduction zone: Catalina Schist, southern California. Geochim Cosmochim Acta 53:3155–3177

    Article  CAS  Google Scholar 

  • Spear FS (1989) Relative thermobarometry and metamorphic P–T paths. In: Daly JS, Cliff RA, Yardley BWD (eds) Evolution of metamorphic Belts, vol 43. Geol Soc Spec Publ Lond, pp 63–81

  • Troitzsch U, Ellis DJ (2004) High-PT study of solid solutions in the system ZrO2-TiO2: the stability of srilankite. Eur J Mineral 16:577–584

    Article  CAS  Google Scholar 

  • Trotet F, Vidal O, Jolivet L (2001) Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P–T paths. Eur J Mineral 13:901–920

    Article  CAS  Google Scholar 

  • Vermeesch P (2004) How many grains are needed for a provenance study? Earth Planet Sci Lett 224:441–451

    Article  CAS  Google Scholar 

  • Vogler-Pazeller GIM (1990) Untersuchungen über hydrothermale TiO2-Vorkommen in den Schweizer Alpen. Dissertation, ETH-Zürich, p 1–129

  • Wang L, Essene EJ, Zhang Y (1999) Mineral inclusions in pyrope crystals from Garnet Ridge, Arizona, USA: implications for processes in the upper mantle. Contrib Mineral Petrol 135:164–178

    Article  CAS  Google Scholar 

  • Wark DA, Watson EB (2004) The TITANiQ: a titanium-in-quartz thermometer. Goldschmidt Conference

    Google Scholar 

  • White RW, Powell R (2002) Melt loss and the preservation of granulite facies mineral assemblages. J Metamorph Geol 20:621–632

    Article  CAS  Google Scholar 

  • Willgallis A, Siegmann E, Hettiaratchi T (1983) Srilankite, a new Zr-Ti-oxide mineral. N Jb Mineral Abh 1983:151–157

    Google Scholar 

  • Yang P, Rivers T (2000) Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: structural, compositional and thermal controls. Geochim Cosmochim Acta 64:1451–1472

    Article  CAS  Google Scholar 

  • Zack T, Rivers T, Foley SF (2001) Cs-Rb-Ba sytematics in phengite and amphibole: an assessment of fluid mobility at 2.0 GPa in eclogites from Trescolmen, Central Alps. Contrib Mineral Petrol 140:651–669

    CAS  Google Scholar 

  • Zack T, Foley SF, Rivers T (2002a) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, Central Alps). J Petrol 43:1947–1974

    Article  CAS  Google Scholar 

  • Zack T, Kronz A, Foley SF, Rivers T (2002b) Trace element abundances in rutiles from eclogites and associated garnet mica schists. Chem Geol 184:97–122

    Article  CAS  Google Scholar 

  • Zack T, Rivers T, Brumm R, Kronz A (2004a) Cold subduction of oceanic crust: implications from a lawsonite eclogite from the Dominican Republic. Eur J Mineral (in press)

  • Zack T, von Eynatten H, Kronz A (2004b). Rutile geochemistry and its potential use in quantitative provenance studies. Sediment Geol (in press)

  • Zhang RY, Zhai SM, Fei YW, Liou JG (2003) Titanium solubility in coexisting garnet and clinopyroxene at very high pressure: the significance of exsolved rutile in garnet. Earth Planet Sci Lett 216:591–601

    Article  CAS  Google Scholar 

  • Zhao G, Cawood PA, Wilde SA, Lu L (2001) High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: petrology and tectonic implications. J Petrol 42:1141–1170

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Altherr, R. Klemd and H. Marschall are thanked for providing samples. P.J. O’Brien is thanked for pointing TZ to outcrops relevant for this study. The aforementioned persons as well as P. Cartigny, M. Engi, S. Klemme, D. Lattard, A. Möller, T. Rivers and H. von Eynatten are acknowledged for stimulating discussions. We acknowledge M. Brown and P. Piccoli for letting us use the Microprobe Lab at the University of Maryland where the idea of this paper appeared. Official reviews by P.J. O’Brien and S. Harley helped to clarify this contribution. Financial support is acknowledged from the Deutsche Forschungsgemeinschaft (ZA 285/2) and the Forschungspool of Universität Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Zack.

Appendices

Appendix 1

Sample description

Below is a brief description (using Kretz-abbreviation) of all samples with particular emphasis of rutile occurrence. About one third of the samples are thin sections that were described petrographically in earlier publications (DR-1, CHM 200, Z6-50-13, Z6-50-2, Z8-59-4, 1041, PD-1, B614, PT-62-A, ANA-287, ML-67). References for these samples are given at the beginning of the description and references of PT estimates for all samples are listed in Table 1 where further petrographic information can be found. Listing of minerals is ordered from most abundant to least abundant.

DR-1 (Samana)

Zack et al. (2004b). Lawsonite eclogite showing a primary assemblage of Gln, Grt, Omp, Phe, Lws, Pg, Qtz, Rt, Ap and Zrc. This assemblage is partly obliterated by small patches of finer-grained Pl, Pmp, Cam, Cal and Chl. Lws is partly replaced by Ep/Czo. Ttn is found inside the fine-grained patches and around Rt replacing it. Rt is found as inclusions of Grt, Omp and Lws and along grain contacts with primary phases.

SY-4 (Syros)

Glaucophane-bearing eclogite composed of Gla, Omp, Grt, Czo, Phe, Qtz, Rt, Ttn, Ap and Zrc. This rock shows no foliation. Grt forms poikiloblasts of different sizes with inclusions of Qtz, Rt, Omp and Gla. Rt is also found in the matrix where it is partly replaced by Ttn.

SY-14 (Syros)

Blueschist composed of Gla, Grt, Czo Qtz, Rt, Ttn, Ap and Zrc. Mostly isotropic rock with only a weak foliation defined by Phe and Gla. Grt forms large poikiloblasts with numerous inclusions of Qtz, Rt and Gla. Rt is also found in the matrix where it is partly replaced by Ttn.

CHM200 (Confin)

Meyre et al. (1999). Eclogite composed of Omp, Grt, Pg, Phe, Am, Qtz, Rt and Zrc. This rock exhibits a pronounced foliation defined by mica and Omp, as well as a centimeter-scale compositional layering. Two Grt generations are present, large porphyroblasts with inclusions of barroisite and small grains in the matrix and at cracks crossing Grt porphyroblasts. Rt occurs with mica in the matrix or as inclusions in Grt. The eclogite facies assemblage is extremely fresh, the only indication of amphibolite facies overprint being micrometer-thick symplectites of Ca-rich Am and Pl around Omp.

Z6-50-13, Z6-50-2 (Trescolmen)

Zack et al. (2001, 2002b). Eclogite composed of Omp, Grt, Am, Phe, Qtz, Pg, Rt and Zrc. Both samples exhibit a pronounced foliation defined by mica, Omp and streaks of Rt grains. Na-rich Am is partly aligned in the foliation and is partly crosscutting it. The eclogite facies assemblage is extremely fresh, the only indication of amphibolite facies overprint being micrometer-thick symplectites of Ca-rich Am and Pl around Omp.

Z8-59-4 (Trescolmen)

Zack et al. (2001). Pelitic schist composed of Qtz, Phe, Grt, Ky, Pg, Bt, Rt, Ilm, Ap and Zrc. The sample shows a pronounced foliation defined by white mica flakes and layers of Qtz. Bt only occurs as a retrograde product of Phe. Rt is distributed throughout the sample and is partly replaced by Ilm.

Z5-109-3 (Catalina Island)

Garnet amphibolite composed of Hbl, Grt, Zo, Pl, Hbl, Ttn, Rt, Zrc and Qtz. The rock shows a granoblastic coarse-grained texture with idiomorphic Grt and subidiomorphic Zo laths. Rt is found as mm sized agglomerates in the matrix, but was not found as Grt inclusion.

Z5-129-1 (Catalina Island)

Garnet amphibolite composed of Cpx, Grt, Pl, Hbl, Ttn, Rt, Zrc, Ilm and Qtz. The rock shows a granoblastic texture with Grt, Cpx and Pl. Rt occurs as small grains both as inclusions in Grt and in the matrix and is partly replaced by Ilm and/or Ttn. Late Hbl overgrows all other phases.

Z5-129-2a (Catalina Island)

Garnet amphibolite composed of Hbl, Grt, Pl, Cpx, Ttn, Rt, Zrc, Ilm and Qtz. The rock shows a granoblastic texture with Grt and Hbl. Oriented Hbl defines a weak foliation. Texturally older Cpx only occurs as relics with irregular grain boundaries surrounded by Hbl. Rt occurs as small inclusions in Grt and in the matrix where it is partly replaced by Ilm and/or Ttn. This sample is from the same outcrop (HGB of Sorensen 1988) as Z5-129-1, where the latter is from the core of a ca. 100 m size block and Z5-129-2a from the rim.

Z5-130-4 (Catalina Island)

Garnet amphibolite composed of Grt and Hbl, Rt, Chl, Qtz and Zrc. Grt porphyroblasts are overgrown by Hbl. Rt porphyroblasts of ≥1 mm are dispersed in the matrix with Hbl, smaller Rt occurs as inclusions in Grt. Pl found as continuous and elongated areas along Grt grain boundaries is interpreted as mimicking a melt phase; now it is dark due to numerous Zo needles.

Z5-2-2 (Alpe Arami)

Eclogite composed of Omp, Grt, Zo, Rt, Qtz and Zrc. Texture is formed by elongated grains of Grt and Omp and agglomerates of small Rt grains. Rt occurs as inclusions in Omp and Grt. Zo occurs almost exclusively as inclusions in Omp or around it.

Z5-2-4 (Alpe Arami)

Eclogite composed of Omp, Grt, Zo, Rt, Qtz, Zrc, and Hbl. Texture is formed by elongated grains of Grt and Omp and agglomerates of small Rt grains. Rt occurs as inclusions in Omp and Grt. Some pyroxene grains are replaced by a fine-grained symplectite. Hbl is late and is located among grains of other phases.

Z02-601-1, Z02-603-1 (Hengshan)

Mafic granulite composed of Cpx, Grt, Pl, Hbl, Opx, Qtz, Bt, Ilm, Rt and Zrc. Grt has Qtz, Pl, Ilm, Rt, Zrc inclusions; its rims are replaced by a series of symplectites consisting of Pl + Hbl, or Pl + Ilm, which separate Grt grains from pyroxenes. Former large pyroxene (assumed to be Omp) is replaced by fine-grained Cpx + Pl ± Hbl symplectites. Hbl porphyroblasts occur in the matrix and are partially replaced by Bt. Rt is rare and occurs in the matrix or as inclusions in Grt partially replaced by Ilm.

Z02-604-2 (Hengshan)

Mafic granulite composed of Cpx, Grt, Pl, Opx, Qtz, Bt, Ilm, Rt, Zrc. Grt occurs in agglomerates of small grains, surrounded by late Hbl and Bt, or as described previously. Opx porphyroblast is surrounded by a corona of Cpx, but in general pyroxenes are replaced by a Pl + pyroxenes symplectite. Late Hbl and Bt overgrow all other phases.

1041 (Sneznik)

Klemd and Bröcker (1999). Mafic granulite composed of Cpx, Qtz, Grt, Pl, Bt, Cpx, Rt, Ky and Zrc. Granoblastic texture, with poikiloblasts of Cpx and Grt having inclusions of Qtz, Pl and Rt. Polycrystalline Qtz inside Grt has been interpreted as former coesite. Bt appears to be part of the primary assemblage.

PD-1 (Andrelândia)

Moraes et al. (2003). Felsic granulite composed of Qtz, Or with oligoclase exsolution, Grt, Ky, Bt, Rt, Zrc. Layered rock formed by bands richer in Grt and Ky and leucosome of granitic composition with some corroded grains of Grt and Ky. Rt occurs in matrix and as inclusions in Grt.

SB-3a, SB-4 (Saidenbach)

Paragneiss composed of Qtz, Phe, Grt, Pl, Ky, Or, Bt, Rt, Zrc, graphite and diamond. Weak foliation defined by Phe and rare graphite flakes. Grt porphyroblasts and irregular Ky grains are equally distributed, bearing inclusions of Rt, large Zrc and diamond. Only cores of Grt porphyroblasts with inclusion phases and Ky were part of the peak metamorphic assemblage, while Pl, Or, Phe, Bt, graphite and a second generation of Grt formed during exhumation.

B614 (Epupa)

Brandt et al. (2003). Felsic granulite composed of Qtz, Grt, Crd, Pl, Bt, ternary feldspar, Rt, and Zrc. Large Grt porphyroblasts are replaced at rims and inside fractures by a symplectite made up of fine-grained Crd  + Opx ± Pl and an outer rim of Opx and both can be replaced partially or completely by Bt. Rt is rare and occurs as inclusion in Grt or with symplectites that replace Grt. Areas of Bt growth are accompanied by a second generation of euhedral Grt. Rt included in euhedral Grt was not analysed.

2a, 2c, 2d (CSGC)

Felsic granulite composed of Qtz, Ky, Grt, ternary feldspar, Bt, Rt, Zrc, and Sil. Mylonitic texture with fine-grained agglomerates of Qtz, feldspar and Bt. Feldspar and Ky occur as porphyroclasts predating deformation. Rt is very rare with only three to six grains included in Grt per thin section.

W70 (Ysper)

Felsic granulite composed of Qtz, Or, Pl, Grt, Ky, Rt, Ilm and Zrc. Relatively fined grained Grt and Ky porphyroblasts set in a matrix of Qtz. Ternary feldspar is largely recrystallized to individual Or and Pl grains, except in inclusions of Grt and Ky where mesoperthite can be observed. Rt and Zrc are found as inclusions in Grt and as larger grains outside Grt.

WA-7, WA-9, WA-12 (Waldheim)

Felsic granulites composed of Pl, Or, Qtz, Grt, Bt, Sil, Ky, Rt, Zrc and ±St associated with the kornerupine-bearing layers described in Grew (1986). Coarse-grained rock, with Pl and Or slightly altered and recrystallized at rims. Grt porphyroblast, 2 cm long, has cracks filled with very fine grained Qtz, white mica, Bt and feldspar; the same intergrowths occurs at Grt rims together with coarse-grained Bt and an outer rim of extremely fine feldspar–quartz intergrowth. Feldspars in contact with Grt exhibit a rim of myrmeckite. Rt occurs in the matrix and as inclusions in Grt, Ky and Pl. When in the matrix it occurs as euhedral or xenomorphic grains. Rt occurs in direct contact with Zrc in the matrix and as inclusion in Grt. Sil occurs as fine needles restricted to some layers.

ML-67 (Anàpolis-Itauçu)

Moraes et al. (2002). Felsic granulite composed of Qtz, Spr, Opx, Sill, Grt, Rt, Ilm, Zrc. Spr and Qtz occur in grain contact or are separated by successive coronas of Sil and Opx, between them (Spr and Qtz) and Grt. Rt occurs in matrix, as exsolution needles in Opx, and as inclusions in Opx and Grt.

PT62-A (Anápolis-Itauçu)

Moraes et al. (2002). Felsic granulite composed of Qtz, Pl, Grt, Opx, Crd, Sil, Spr, Spl, Rt, Ilm, Zrc, Ap. Primary assemblage is formed by Spr + Qtz ± Opx ± Grt. Spr + Qtz + Grt were replaced by Spl + Crd + Sil + Rt as granular intergrowths. Grt rims were replaced by Opx + Crd corona or symplectite, which in turn were replaced by Bt. Rt occurs as inclusions in Grt and Opx, and is replaced by Ilm when associated with coronas or symplectites.

ANA-287 (Anápolis-Itauçu)

Moraes et al. (2002). Felsic granulite composed of Opx, Gt, Crd, Sil, Spl, Pl, Or, Bt, Rt, Ilm, Zrc. Banded rock, with granitic leucosome (Qtz, Or, Pl with residual Crd and Grt) and granulite composed of Qtz, Pl, Bt as well as porphyroblastic Grt and Opx. Grt porphyroblast is replaced by successive Crd and Opx corona, with Rt being replaced by Ilm, these coronas are replaced by a new generation of Bt. New Grt formed at this stage during melt-back reaction. Spl + Crd + Sil agglomerates occur in matrix. Rt occurs in matrix or as inclusions in Grt and Opx.fe3.

Appendix 2

Electron microprobe data of rutiles from rt–qtz–zrc assemblages. Zr concentration for samples SY-4 and SY-14 are determined by ion microprobe. Concentrations are given as parts per million

Texture

Al

Si

V

Cr

Fe

Nb

Zr

DR1

 m5.1

BD

128

1,316

371

3,770

281

35

 m5.2

BD

127

1,355

319

3,669

202

37

 m6.1

61

157

1,823

281

2,192

225

30

 m6.2

51

128

1,805

322

2,168

361

37

 m7

BD

134

2,305

369

2,242

254

33

CHM200

 i2

114

BD

1,128

1,841

1,957

193

106

 i3

140

BD

1,353

1,087

3,199

88

74

 i4

210

BD

1,298

845

3,768

186

123

 i5

136

BD

1,686

809

2,378

154

137

 i6

276

114

1,278

576

4,853

180

115

 i7

211

BD

1,400

553

3,548

163

129

 i8

130

BD

1,659

788

3,931

144

101

 i9.1

168

BD

1,101

1,053

1,993

159

75

 i9.2

147

BD

1,237

1,064

2,815

163

146

 m1

142

BD

1,666

1,517

3,521

108

125

 m2

41

165

1,183

1,191

2,482

185

108

 m3.1

118

BD

1,203

1,845

1,691

147

96

 m3.2

103

BD

1,142

1,846

1,959

172

107

50-13

 m5.1

126

BD

1,428

1,499

2,565

603

153

 m5.2

93

BD

1,429

1,484

2,639

530

164

 m6.1

142

BD

1,406

1,567

2,654

709

181

 m6.2

105

BD

1,376

1,568

2,790

562

157

 m7.1

87

BD

1,704

1,770

2,423

842

164

 m7.2

81

BD

1,685

1,765

2,381

822

164

 i2.1

92

54

1,346

1,434

3,049

740

181

 i2.2

65

BD

1,387

1,456

2,968

739

162

 i3.1

73

BD

1,557

2,063

2,626

768

171

 i3.2

79

BD

1,659

2,138

2,744

839

169

 i4.1

282

424

1,448

1,484

4,915

613

164

 i4.2

126

BD

1,217

1,501

2,869

794

149

59-4

 m1.1

52

176

782

450

3,559

1,849

164

 m1.2

63

143

843

488

3,792

1,799

152

 m2

BD

135

904

189

6,790

1,531

149

50-2

 m1.1

BD

BD

1,801

666

2,317

246

142

 m1.2

40

BD

1,761

690

2,256

299

135

 m2

52

52

1,931

770

1,767

318

161

 m3

54

BD

1,686

763

1,789

246

106

 m4.1

84

BD

1,733

745

1,868

195

151

 m4.2

271

557

1,754

804

2,741

325

166

 m5.1

81

BD

1,849

830

1,815

318

169

 m5.2

82

BD

1,767

751

1,929

296

164

2-2

 i1

150

BD

1,822

1,144

3,613

142

323

 i2

64

BD

1,944

1,073

2,435

158

263

 i3

158

144

1,869

1,254

4,749

133

226

 i4

65

BD

1,652

1,570

1,657

114

315

 i5

164

BD

1,754

1,009

5,373

128

309

 ic6

73

BD

1,496

1,176

1,331

136

505

 i7

129

BD

2,271

1,583

3,717

143

271

 i8

135

BD

2,386

1,556

3,774

139

250

 m1

69

BD

1,625

2,000

986

117

292

 i9

36

BD

1,924

1,438

929

136

430

 m2

43

BD

1,570

1,334

1,289

146

331

2-4

 i1

100

50

1,156

1,171

3,809

136

542

 i2

147

BD

1,400

1,208

5,007

197

400

 i3

143

BD

1,829

1,855

3,012

194

292

 ic4

BD

131

1,033

796

1,420

278

444

 i5

161

BD

1,740

1,724

2,757

179

308

 i6

210

BD

1,659

1,138

3,253

132

271

 m1

94

BD

1,128

1,085

571

309

182

 m2

67

BD

1,162

1,082

849

280

372

 i7

100

BD

1,659

1,033

2,734

137

300

 ic8

87

BD

1,224

923

711

171

315

 m3

94

BD

1,013

1,110

894

307

411

109-3

 m1.1

110

BD

1,232

212

3,233

1,418

314

 m1.2

264

BD

1,213

163

3,572

2,141

359

 m1.3

153

BD

1,263

198

3,258

1,579

302

 m1.4

177

BD

1,292

157

3,859

1,310

324

 m1.5

454

BD

1,264

178

2,865

1,524

268

 m1.6

205

BD

1,291

261

3,696

1,969

450

 m2.1

99

58

1,194

264

4,648

1,695

270

 m2.2

61

BD

1,220

273

3,556

1,761

191

 m2.3

141

BD

1,308

281

3,685

2,522

255

 m2.4

179

BD

1,310

254

3,172

1,949

279

 m2.5

228

BD

1,326

289

3,349

1,959

375

129-1

 m1.1

168

84

3,425

1,142

1,373

516

409

 m1.2

82

153

3,268

1,102

1,832

430

426

 i1.1

176

93

2,677

249

5,832

275

448

 i1.2

205

81

2,289

257

5,516

294

450

 i2

197

426

1,508

148

7,746

631

503

 i3

288

BD

2,761

326

2,577

211

433

 i4

297

BD

2,747

336

2,554

234

427

 i5

1,512

BD

2,647

329

1,841

190

434

 i6

166

BD

2,691

317

2,578

196

453

 i7

187

BD

2,636

348

2,816

202

488

 i8

176

BD

2,672

295

3,118

254

456

 i9

178

90

2,649

313

3,810

237

477

 i10

160

81

2,468

277

5,916

219

372

129-2a

 i1

213

BD

2,400

105

3,213

196

427

 i2

188

89

1,647

74

6,182

160

411

 i3

166

232

1,560

82

9,174

85

367

 m1.1

125

81

2,468

180

2,524

992

410

 m1.2

140

71

2,542

224

2,811

1,078

423

 m2

39

BD

3,141

112

3,446

233

235

 i6

152

59

1,970

64

5,895

153

393

130-4

 i1.1

182

BD

1,049

BD

5,328

1,743

439

 i1.2

191

92

1,057

BD

6,669

1,862

396

 i1.3

203

73

1,020

BD

5,816

1,832

433

 i2.1

552

BD

1,293

BD

3,543

1,797

489

 i2.2

465

BD

1,303

37

4,384

1,826

456

 i2.3

563

BD

1,321

37

3,616

1,808

521

 m1.1

364

BD

995

BD

3,836

1,656

290

 m1.2

218

BD

998

46

4,157

1,733

279

 m1.3

415

BD

1,040

39

3,867

1,557

301

601-1

 i1

65

BD

1,174

244

1,829

1,223

498

 i2

101

139

975

253

5,970

457

351

 i3

102

929

776

51

3,842

338

416

 i4

60

120

881

119

11,038

253

581

 i5

112

210

963

231

8,488

287

544

603-1

 i1.1

88

BD

1,375

108

2,334

498

560

 i1.2

69

59

1,319

152

2,179

481

492

 i2.1

68

143

997

50

3,976

229

454

 i2.2

74

110

1,059

42

3,927

267

467

 i3.1

395

60

1,358

196

4,393

454

538

 i3.2

330

BD

1,320

230

3,982

486

572

 i3.3

180

55

1,367

221

5,425

515

621

604-2

 i1.1

245

139

745

139

5,533

355

492

 i1.2

165

125

1,153

86

5,482

349

530

 i1.3

236

142

760

102

5,779

370

520

 i1.4

245

122

765

89

5,727

376

525

 i2.2

218

133

1,139

100

5,899

333

525

 i2.3

421

295

1,152

103

5,653

307

550

SB-3a

 m1

402

112

1,200

371

3,131

5,014

492

 m2

477

209

1,329

413

2,721

4,738

347

 m3

291

86

2,033

872

4,835

4,940

332

SB-4

 i1.1

861

BD

634

296

3,227

4,471

1,505

 i1.2

859

BD

742

261

3,389

4,533

1,508

 i1.3

892

BD

715

307

3,903

4,620

1,555

 i1.4

846

BD

678

270

3,281

4,624

1,548

 i1.5

889

BD

714

284

3,227

4,368

1,511

 i2

1,212

209

1,536

697

7,123

7,082

1,067

 m1.1

546

111

1,644

574

3,189

6,126

1,013

 m1.2

598

145

1,764

620

3,194

6,921

1,012

 m1.3

549

84

1,685

596

3,231

6,061

999

 i3.1

771

BD

969

348

2,190

3,760

1,273

 i3.2

737

BD

1,003

362

1,989

3,823

1,247

 i3.3

675

BD

988

330

2,517

3,871

1,242

WA-7

 i1

314

BD

4,222

1,080

1,000

2,368

3,781

 i2

69

BD

5,731

1,166

894

2,413

3,714

 i3

279

BD

5,595

1,175

2,513

2,351

3,620

 i4

86

46

5,350

1,125

2,641

2,267

3,796

 i5

273

BD

4,385

990

990

2,517

2,692

 i6

139

BD

4,623

857

919

2,923

5,365

 i7

282

BD

4,963

1,100

1,244

2,316

3,365

 i8

252

BD

4,929

1,147

2,302

2,445

3,353

 m1

91

BD

3,324

1,325

1,771

1,934

2,840

 m2

144

BD

4,405

1,754

1,581

2,210

3,589

 m3

BD

BD

4,867

1,923

1,796

2,216

3,535

 m4

250

BD

4,670

2,019

1,476

2,196

3,578

 ik9

811

BD

1,115

1,096

4,580

2,156

431

WA-9

 i1

149

BD

5,031

1,766

1,448

3,147

2,895

 i2

161

BD

4,629

1,863

1,366

3,627

2,701

 i3

202

BD

4,575

1,482

2,288

2,962

3,294

 m1

273

BD

4,160

1,101

1,758

3,016

2,761

 i4

39

BD

5,636

1,811

1,816

2,925

3,332

 i5

239

80

5,221

1,773

2,414

2,208

2,980

 i6a

117

231

4,813

1,457

2,301

881

230

 i7

62

BD

5,248

1,703

1,443

2,479

3,149

 i8

141

BD

5,513

1,732

874

3,087

3,328

 m2

69

BD

4,990

2,015

1,591

2,953

3,401

 m3

316

57

4,024

1,653

1,358

3,037

3,334

 m4

170

191

4,079

1,616

1,169

3,061

3,433

 m5

77

BD

4,799

1,736

1,243

2,965

3,327

WA-12

 i1

383

247

1,570

330

5,480

1,127

1,868

 i2

289

BD

2,597

412

2,932

1,317

2,066

 i3

337

184

585

214

6,206

1,635

1,668

 i4

468

BD

646

200

5,016

2,908

1,367

 i5

453

BD

591

296

5,104

2,748

2,027

 i6

142

211

918

265

6,827

2,759

2,670

 m1

73

111

3,888

1,619

1,855

3,191

2,786

 m2

168

BD

4,806

1,530

1,878

3,027

2,935

 m3

149

BD

4,643

1,376

2,519

4,516

3,498

 m4

154

BD

3,950

1,628

1,857

2,775

3,025

 m5

174

BD

4,296

1,578

2,107

3,624

2,723

 m6

134

BD

4,561

1,544

2,239

4,207

3,346

2a

 i1

384

139

3,950

482

7,763

1,887

1,412

 i2

530

116

3,508

1,043

6,821

2,365

1,470

 i3

398

136

3,059

710

7,174

1,914

1,530

2c

 i1

406

247

3,814

718

8,601

2,665

1,529

 i2

388

227

3,773

695

8,479

2,611

1,525

 i3

215

101

4,425

1,204

4,627

1,884

1,577

 i4

284

BD

4,575

1,154

4,177

1,692

1,133

 i5

509

131

3,209

1,032

6,647

1,983

611

2d

 ik1

357

84

4,405

1,213

2,156

1,546

1,327

i2

234

129

3,793

903

9,410

1,774

1,554

i3

452

130

3,562

841

3,048

2,213

793

i4

691

188

3,583

1,002

1,657

1,775

934

i5

200

122

3,392

1,460

10,937

1,778

1,493

m1

93

558

2,930

1,302

1,708

1,098

1,321

i6

67

167

6,077

1,332

5,222

1,362

1,594

PD1

i1.1

138

BD

2,209

452

1,758

3,941

1,394

i1.2

93

BD

2,264

436

1,978

3,984

1,404

i2.1

134

BD

687

172

4,954

1,752

784

i2.2

134

BD

687

207

4,860

1,773

838

i3

127

BD

1,047

217

2,798

1,424

839

i4

66

BD

6,030

1,154

870

2,612

926

i5

43

BD

5,615

1,115

764

2,669

854

i6

BD

BD

5,180

1,039

979

2,726

1,168

m1

BD

BD

5,554

2,375

526

1,925

1,380

ik7

307

75

1,217

501

2,139

3,168

329

i8

57

BD

836

342

2,938

2,124

795

i9

118

BD

965

376

3,216

2,240

1,025

m2

BD

BD

5,466

1,499

394

2,056

1,243

B614

i1.1

1,589

BD

605

42

8,770

16,807

3,635

i1.2

1,526

BD

666

BD

8,198

16,905

3,681

i2.1

1,967

50

1,271

46

17,183

27,961

7,127

i2.2

1,905

BD

1,366

42

17,110

28,542

7,276

m1

257

274

619

BD

8,396

14,351

1,053

m2

835

BD

829

45

6,699

14,152

2,628

1041

i1.1

78

112

1,149

72

4,036

538

660

i1.2

68

57

1,183

59

3,829

531

646

i2

414

198

1,536

176

6,581

256

1,390

i3

180

158

1,591

294

8,464

369

631

i4

175

111

1,937

458

4,615

734

1,630

i5.1

75

BD

1,210

216

4,252

471

1,568

i5.2

58

BD

1,271

317

3,988

475

1,586

m1.1

40

BD

1,298

260

3,552

453

1,735

m1.2

75

127

1,339

270

3,446

464

1,605

m2

63

86

1,271

286

3,031

449

1,691

W70

i1

202

487

2,828

446

5,914

897

2,934

m1

81

265

2,706

532

601

944

3,041

i2

265

247

2,474

365

8,769

821

4,803

m2

59

352

3,773

589

1,536

1,514

3,695

m3

121

294

2,882

422

4,918

904

2,941

i3

162

143

2,508

378

6,633

1,063

3,876

i4

140

232

2,617

382

5,898

1,128

3,906

PT-62-A

i1

61

BD

3,078

223

5,665

3,039

3,251

i2.1

378

BD

3,249

874

5,623

3,742

5,344

i2.2

296

46

3,226

903

6,871

3,830

5,358

i3.1

141

BD

3,157

374

5,420

3,649

4,850

i3.2

154

BD

3,205

378

5,767

3,722

4,818

i4

58

BD

3,614

385

3,133

1,454

5,402

i5

247

BD

3,981

429

3,726

2,307

5,623

i6

91

106

3,648

519

4,213

2,077

5,462

i7

86

BD

4,116

464

4,928

2,380

5,442

i8

277

BD

4,268

340

9,639

2,412

5,595

i9.1

42

BD

3,697

525

3,293

1,685

5,363

i9.2

77

BD

3,795

556

3,859

1,682

5,388

m1

54

BD

3,638

1,876

3,806

3,691

2,422

m2

332

BD

2,089

616

3,989

4,694

2,769

m3

289

BD

2,348

673

3,933

6,105

3,808

i10

272

107

3,309

325

7,328

3,931

3,852

m4

126

BD

2,124

714

4,226

5,889

949

m5

221

186

3,112

933

3,518

5,035

1,051

i11

537

BD

3,432

211

5,550

1,651

2,909

i12.1

105

BD

3,712

1,046

3,051

3,269

1,423

i12.2

BD

BD

3,661

1,079

3,045

3,228

1,913

i13

293

BD

4,483

704

5,791

2,600

5,489

i14

110

BD

4,780

1,744

3,340

2,611

4,317

m6

50

163

3,780

1,620

1,847

3,050

3,712

m7

221

BD

2,602

1,108

3,498

3,098

1,967

ANA-287

i1.1

305

BD

2,768

216

3,696

1,968

667

i1.2

259

BD

2,691

220

3,626

1,991

737

i2

78

BD

2,849

343

4,647

2,710

1,805

m1.1

301

BD

2,349

1,456

3,329

5,880

4,146

m1.2

112

BD

2,449

1,697

3,361

4,413

3,470

io3

144

BD

1,757

616

5,862

3,479

6,207

io4

124

BD

1,745

558

5,072

2,319

4,797

io5

298

BD

1,862

787

3,502

3,309

3,679

io6

219

BD

1,706

483

3,989

3,895

2,233

io7

138

BD

1,239

489

4,765

3,946

4,579

i8

235

BD

1,518

392

4,979

1,243

3,851

i9

BD

BD

1,927

448

6,330

1,107

2,532

i10

206

BD

2,406

924

8,461

10,236

1,911

i11.1

408

BD

1,863

718

2,188

372

234

i11.2

435

BD

1,888

701

1,631

659

444

m2

91

BD

1,602

583

1,711

734

517

m3

145

BD

1,782

704

1,787

1,018

1,315

m4

132

62

2,073

836

2,930

3,024

5,155

m5

141

BD

1,816

573

4,469

3,584

1,104

m6

215

BD

1,542

889

2,845

3,150

4,568

ML-67

i1

124

97

BD

BD

9,985

78

4,123

io2

65

206

109

BD

7,412

BD

6,847

m1

105

58

BD

BD

1,207

456

1,387

m2

128

241

BD

BD

1,115

106

850

m3.1

220

112

BD

BD

5,312

6,893

2,213

m3.2

236

64

BD

BD

5,282

6,906

2,203

m4.1

88

BD

115

BD

3,347

1,584

5,133

m4.2

110

BD

152

BD

3,128

1,487

5,073

io5

100

237

179

BD

5,099

BD

3,243

i6

78

165

BD

BD

7,109

51

5,037

io7

119

225

BD

BD

5,019

973

4,558

m5

105

212

BD

BD

5,203

1,149

3,901

m6.1

91

60

150

BD

2,010

1,134

1,572

m6.2

84

75

76

BD

7,511

1,217

1,683

m6.3

108

85

125

BD

1,916

1,259

1,848

m7

94

BD

BD

BD

3,322

1,845

1,355

m8

93

160

BD

BD

1,375

189

739

i8

98

146

215

BD

4,175

966

8,418

i9

216

200

BD

BD

6,710

814

3,475

m9

187

BD

BD

BD

1,974

649

2,329

m10

101

BD

129

BD

3,423

914

2,586

io10.1

347

BD

105

BD

11,551

14,460

2,914

io10.2

398

BD

BD

BD

10,824

14,574

2,949

i11

89

314

BD

BD

10,827

506

3,291

io12

126

308

BD

BD

6,431

819

2,631

SY-14

 

51

50

38

48

SY-4

 

40

28

36

33

  1. Numbers after dots at column “texture” indicate repeated analysis of same grain. Bold values indicate Zr content of rutiles used for calibration of the thermometer
  2. m matrix, i inclusion in grt, ic inclusion in cpx, ik inclusion in kyanite, io inclusion in opx
  3. aOnly inclusion rutile not used for calibration

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zack, T., Moraes, R. & Kronz, A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib Mineral Petrol 148, 471–488 (2004). https://doi.org/10.1007/s00410-004-0617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00410-004-0617-8

Keywords

Navigation