Skip to main content

Advertisement

Log in

Serum Free Fatty Acid Concentration Predicts ARDS after Off-Pump CABG: A Prospective Observational Study

  • RESEARCH
  • ACUTE RESPIRATORY DISTRESS SYNDROME AFTER CARDIAC SURGERY
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

Free fatty acids (FFAs) are established risk factors for various cardiovascular and metabolic disorders. Elevated FFAs can trigger inflammatory response, which may be associated with the occurrence of acute respiratory distress syndrome (ARDS) in cardiac surgery. In this prospective study, we aimed to investigate the association between circulating FFA and the incidence of ARDS, as well as the length of ICU stay, in patients undergoing off-pump coronary artery bypass grafting (CABG).

Methods

We conducted a single-center, prospective, observational study among patients undergoing off-pump CABG. The primary endpoint was the occurrence of ARDS within 6 days after off-pump CABG. Serum FFA were measured at baseline and 24 h post-procedure, and the difference (Δ-FFA) was calculated.

Results

A total of 180 patients were included in the primary analysis. The median FFA was 2.3 mmol/L (quartile 1 [Q1]–Q3, 1.4–3.2) at baseline and 1.5 mmol/L (Q1–Q3, 0.9–2.3) 24 h after CABG, with a Δ-FFA of 0.6 mmol/L (Q1–Q3, -0.1 to 1.6). Patients with elevated Δ-FFA levels had a significantly higher ARDS occurrence (55.6% vs. 22.2%; P < 0.001). Elevated Δ-FFA after off-pump CABG correlated with a significantly lower PaO2/FiO2 ratio, prolonged mechanical ventilation, and extended length of ICU stay. The area under the curve (AUC) of Δ-FFA for predicting ARDS (AUC, 0.758; 95% confidence interval, 0.686–0.831) significantly exceeded the AUC of postoperative FFA (AUC, 0.708; 95% CI 0.628–0.788; P < 0.001).

Conclusions

Elevated Δ-FFA levels correlated with ARDS following off-pump CABG. Monitoring FFA may assist in identifying high-risk patients for ARDS, facilitating timely interventions to improve clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data generated from this study including supporting information and Raw data are available from the corresponding author on reasonable request.

References

  1. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398(10300):622–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yadav H, Thompson BT, Gajic O (2017) Is acute respiratory distress syndrome a preventable disease? Am J Resp Crit Care 195(6):725–736

    Article  CAS  Google Scholar 

  3. Stephens RS, Shah AS, Whitman GJR (2013) Lung injury and acute respiratory distress syndrome after cardiac surgery. Ann Thorac Surg 95(3):1122–1129

    Article  PubMed  Google Scholar 

  4. Rong LQ, Di Franco A, Gaudino M (2016) Acute respiratory distress syndrome after cardiac surgery. J Thorac Dis 8(10):E1177–E1186

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asimakopoulos G, Taylor KM, Smith PL, Ratnatunga CP (1999) Prevalence of acute respiratory distress syndrome after cardiac surgery. J Thorac Cardiov Sur 117(3):620–621

    Article  CAS  Google Scholar 

  6. Leviner DB, Torregrossa G, Puskas JD (2018) Incomplete revascularization: what the surgeon needs to know. Ann Cardiothorac Sur 7(4):463–469

    Article  Google Scholar 

  7. Ibanez B, Heusch G, Ovize M, Van de Werf F (2015) Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 65(14):1455–1471

    Article  Google Scholar 

  8. Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, Rabinowitz JD, Frankel DS, Arany Z (2020) Comprehensive quantification of fuel use by the failing and nonfailing human heart. Science 370(6514):364–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaba P, Gersh BJ, Ali ZA, Moses JW, Stone GW (2021) Complete versus incomplete coronary revascularization: definitions, assessment and outcomes. Nat Rev Cardiol 18(3):155–168

    Article  PubMed  Google Scholar 

  10. Michalopoulos A, Tzelepis G, Dafni U, Geroulanos S (1999) Determinants of hospital mortality after coronary artery bypass grafting. Chest 115(6):1598–1603

    Article  CAS  PubMed  Google Scholar 

  11. Mozaffarian D (2007) Free fatty acids, cardiovascular mortality, and cardiometabolic stress. Eur Heart J 28(22):2699–2700

    Article  CAS  PubMed  Google Scholar 

  12. Henderson GC (2021) Plasma free fatty acid concentration as a modifiable risk factor for metabolic disease. Nutrients 13(8):2590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li M, van Esch BCAM, Wagenaar GTM, Garssen J, Folkerts G, Henricks PAJ (2018) Pro- and anti-inflammatory effects of short chain fatty acids on immune and endothelial cells. Eur J Pharmacol 831:52–59

    Article  CAS  PubMed  Google Scholar 

  14. Yin J, Peng Y, Wu J, Wang Y, Yao L (2014) Toll-like receptor 2/4 links to free fatty acid-induced inflammation and beta-cell dysfunction. J Leukoc Biol 95(1):47–52

    Article  PubMed  Google Scholar 

  15. Lu P, Lu XH, Li B, Wang CF, Wang XF, Ji YM, Liu ZY, Li XY, Yi CL, Song MJ, Wang XW (2022) High-sensitivity cardiac troponin t in prediction and diagnosis of early postoperative hypoxemia after off-pump coronary artery bypass grafting. J Cardiovasc Dev Dis 9(12):416

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Montes FR, Maldonado JD, Paez S, Ariza F (2004) Off-pump versus on-pump coronary artery bypass surgery and postoperative pulmonary dysfunction. J Cardiothor Vasc An 18(6):698–703

    Article  Google Scholar 

  17. Chiarenza F, Tsoutsouras T, Cassisi C, Santonocito C, Gerry S, Astuto M, George S, Sanfilippo F (2019) The effects of on-pump and off-pump coronary artery bypass surgery on respiratory function in the early postoperative period. J Intensive Care Med 34(2):126–132

    Article  PubMed  Google Scholar 

  18. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS, Force ADT (2012) Acute respiratory distress syndrome the berlin definition. Jama-J Am Med Assoc 307(23):2526–2533

    Google Scholar 

  19. Yuan DS, Xu N, Song Y, Zhang Z, Xu JJ, Liu ZY, Tang XF, Han YL, Chen Y, Zhang YZ, Zhu P, Guo XG, Wang ZF, Liu R, Wang QS, Yao Y, Feng YQ, Zhao XY, Yuan JQ (2023) Association between free fatty acids and cardiometabolic risk in coronary artery disease: results from the PROMISE study. J Clin Endocr Metab 109:125–134

    Article  PubMed  Google Scholar 

  20. Shi S, Gao Y, Wang LM, Liu J, Yuan ZX, Yu M (2015) Elevated free fatty acid level is a risk factor for early postoperative hypoxemia after on-pump coronary artery bypass grafting: association with endothelial activation. J Cardiothorac Surg 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han FY, Hu F, Wang T, Zhou W, Zhu LJ, Huang X, Bao HH, Cheng XS (2022) Association between basal metabolic rate and all-cause mortality in a prospective cohort of southern chinese adults. Front Physiol 12:790347

    Article  PubMed  PubMed Central  Google Scholar 

  22. Agudelo CW, Samaha G, Garcia-Arcos I (2020) Alveolar lipids in pulmonary disease. A review. Lipids Health Dis 19(1):122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Halbirk M, Norrelund H, Moller N, Schmitz O, Gotzsche L, Nielsen R, Nielsen-Kudsk JE, Nielsen SS, Nielsen TT, Eiskjaer H, Botker HE, Wiggers H (2010) Suppression of circulating free fatty acids with acipimox in chronic heart failure patients changes whole body metabolism but does not affect cardiac function. Am J Physiol-Heart C 299(4):H1220–H1225

    Article  CAS  Google Scholar 

  24. Manolis AA, Manolis TA, Melita H, Mikhailidis DP, Manolis AS (2022) Low serum albumin: A neglected predictor in patients with cardiovascular disease. Eur J Intern Med 102:24–39

    Article  CAS  PubMed  Google Scholar 

  25. Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, Harms HJ, Frokiaer J, Eiskjaer H, Jespersen NR, Mellemkjaer S, Lassen TR, Pryds K, Botker HE, Wiggers H (2019) Cardiovascular effects of treatment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 139(18):2129–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saddik M, Lopaschuk GD (1992) Myocardial triglyceride turnover during reperfusion of isolated rat hearts subjected to a transient period of global ischemia. J Biol Chem 267(6):3825–3831

    Article  CAS  PubMed  Google Scholar 

  27. Kolwicz SC Jr (2021) Ketone body metabolism in the ischemic heart. Front Cardiovasc Med 8:789458

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sanfilippo F, Palumbo GJ, Bignami E, Pavesi M, Ranucci M, Scolletta S, Pelosi P, Astuto M (2022) Acute respiratory distress syndrome in the perioperative period of cardiac surgery: predictors diagnosis, prognosis, management options, and future directions. J Cardiothorac Vasc Anesth 36(4):1169–1179

    Article  CAS  PubMed  Google Scholar 

  29. Silva PL, Pelosi P, Rocco PRM (2020) Personalized pharmacological therapy for ARDS: a light at the end of the tunnel. Expert Opin Investig Drugs 29(1):49–61

    Article  CAS  PubMed  Google Scholar 

  30. Sadee W, Wang D, Hartmann K, Toland AE (2023) Pharmacogenomics: driving personalized medicine. Pharmacol Rev 75(4):789–814

    Article  CAS  PubMed  Google Scholar 

  31. Bourgonje AR, Kloska D, Grochot-Przeczek A, Feelisch M, Cuadrado A, van Goor H (2023) Personalized redox medicine in inflammatory bowel diseases: an emerging role for HIF-1alpha and NRF2 as therapeutic targets. Redox Biol 60:102603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Asensio M, Herraez E, Macias RIR, Lozano E, Munoz-Bellvis L, Sanchez-Vicente L, Morente-Carrasco A, Marin JJG, Briz O (2023) Relevance of the organic anion transporting polypeptide 1B3 (OATP1B3) in the personalized pharmacological treatment of hepatocellular carcinoma. Biochem Pharmacol 214:115681

    Article  CAS  PubMed  Google Scholar 

  33. Makimura H, Stanley TL, Suresh C, De Sousa-Coelho AL, Frontera WR, Syu S, Braun LR, Looby SE, Feldpausch MN, Torriani M, Lee H, Patti ME, Grinspoon SK (2016) Metabolic effects of long-term reduction in free fatty acids with acipimox in obesity: a randomized trial. J Clin Endocrinol Metab 101(3):1123–1133

    Article  CAS  PubMed  Google Scholar 

  34. Liang H, Tantiwong P, Sriwijitkamol A, Shanmugasundaram K, Mohan S, Espinoza S, Defronzo RA, Dube JJ, Musi N (2013) Effect of a sustained reduction in plasma free fatty acid concentration on insulin signalling and inflammation in skeletal muscle from human subjects. J Physiol 591(11):2897–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kintscher U, Foryst-Ludwig A, Haemmerle G, Zechner R (2020) The role of adipose triglyceride lipase and cytosolic lipolysis in cardiac function and heart failure. Cell Rep Med 1(1):100001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

This research was supported by National Natural Science Foundation of China (No. 81573234), National Natural Science Foundation of China (No. 81773445), Key Project of Taizhou School of Clinical Medicine (No. TZKY20220304), Key Project of Jiangsu Commission of Health (No. ZDA2020004), and Ili&Jiangsu Joint Institute of Health (No. YL2022MS04).

Author information

Authors and Affiliations

Authors

Contributions

M.S. and X.W. conceived and designed the study. P.L., J.F., X.Y., Z.L., Y.Q., Z.S., and Z.W. gathered the data. P.L., C.Y., and M.S. performed statistical analyses. P.L., J.F., X.L., and X.W. wrote the first draft of the manuscript. P.L., M.S., and X.W. made critical revision of the manuscript for key intellectual components. All authors provided approval of the final version of the manuscript.

Corresponding authors

Correspondence to Meijuan Song or Xiaowei Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical Approval

Ethical approval for this study was obtained from The First Affiliated Hospital with Nanjing Medical University (protocol code 2023-SR-513, 2023-03-23).

Consent to Participate

Informed consent was obtained for all participants in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Fan, J., Li, X. et al. Serum Free Fatty Acid Concentration Predicts ARDS after Off-Pump CABG: A Prospective Observational Study. Lung (2024). https://doi.org/10.1007/s00408-024-00704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00408-024-00704-3

Keywords

Navigation