Skip to main content

Advertisement

Log in

Associations of the Serum KL-6 with Severity and Prognosis in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease

  • RESEARCH
  • COPD
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Background

As a biomarker of alveolar-capillary basement membrane injury, Krebs von den Lungen-6 (KL-6) is involved in the occurrence and development of pulmonary diseases. However, the role of the KL-6 in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) has yet to be elucidated. This prospective study was designed to clarify the associations of the serum KL-6 with the severity and prognosis in patients with AECOPD.

Methods

This study enrolled 199 eligible AECOPD patients. Demographic data and clinical characteristics were recorded. Follow-up was tracked to evaluate acute exacerbation and death. The serum KL-6 concentration was measured via an enzyme-linked immunosorbent assay.

Results

Serum KL-6 level at admission was higher in AECOPD patients than in control subjects. The serum KL-6 concentration gradually elevated with increasing severity of AECOPD. Pearson and Spearman analyses revealed that the serum KL-6 concentration was positively correlated with the severity score, monocyte count and concentrations of C-reactive protein, interleukin-6, uric acid, and lactate dehydrogenase in AECOPD patients during hospitalization. A statistical analysis of long-term follow-up data showed that elevated KL-6 level at admission was associated with longer hospital stays, an increased risk of future frequent acute exacerbations, and increased severity of exacerbation in COPD patients.

Conclusion

Serum KL-6 level at admission is positively correlated with increased disease severity, prolonged hospital stay and increased risk of future acute exacerbations in COPD patients. There are positive dose–response associations of elevated serum KL-6 with severity and poor prognosis in COPD patients. The serum KL-6 concentration could be a novel diagnostic and prognostic biomarker in AECOPD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Song Q, Lin L, Zhou A et al (2023) The effects of different inhalation therapies on less symptomatic chronic obstructive pulmonary disease patients in a Chinese population: a real-world study. Ann Med 55(1):1317–1324. https://doi.org/10.1080/07853890.2023.2192519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang C, Xu J, Yang L et al (2018) Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): a national cross-sectional study. Lancet 391(10131):1706–1717. https://doi.org/10.1016/S0140-6736(18)30841-9

    Article  PubMed  Google Scholar 

  3. Zhou M, Wang H, Zeng X et al (2019) Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 394(10204):1145–1158. https://doi.org/10.1016/S0140-6736(19)30427-1

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lou P, Zhu Y, Chen P et al (2012) Vulnerability, beliefs, treatments and economic burden of chronic obstructive pulmonary disease in rural areas in China: a cross-sectional study. BMC Public Health. https://doi.org/10.1186/1471-2458-12-287

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boers E, Barrett M, Su JG et al (2023) Global burden of chronic obstructive pulmonary disease through 2050. JAMA Netw Open 6(12):e2346598. https://doi.org/10.1001/jamanetworkopen.2023.46598

    Article  PubMed  PubMed Central  Google Scholar 

  6. Crapo RO (1994) Pulmonary-function testing. N Engl J Med 331(1):25–30. https://doi.org/10.1056/NEJM199407073310107

    Article  CAS  PubMed  Google Scholar 

  7. Xiao C, Cheng S, Li R et al (2021) Isoforskolin alleviates AECOPD by improving pulmonary function and attenuating inflammation which involves downregulation of Th17/IL-17A and NF-κB/NLRP3. Front Pharmacol. https://doi.org/10.3389/fphar.2021.721273

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weber B, Sturm R, Henrich D et al (2023) Diagnostic and prognostic potential of exosomal cytokines IL-6 and IL-10 in polytrauma patients. Int J Mol Sci 24(14):11830. https://doi.org/10.3390/ijms241411830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vitacca M, Malovini A, Paneroni M et al (2024) Predicting response to in-hospital pulmonary rehabilitation in individuals recovering from exacerbations of chronic obstructive pulmonary disease. Arch Bronconeumol 60(3):153–160. https://doi.org/10.1016/j.arbres.2024.01.001

    Article  PubMed  Google Scholar 

  10. Lee HW, Lee JK, Hwang YI et al (2024) Spirometric interpretation and clinical relevance according to different reference equations. J Korean Med Sci. https://doi.org/10.3346/jkms.2024.39.e20

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chung C, Lee JW, Lee SW et al (2024) Clinical efficacy of mobile app-based, self-directed pulmonary rehabilitation for patients with chronic obstructive pulmonary disease: systematic review and meta-analysis. JMIR Mhealth Uhealth 12:e41753. https://doi.org/10.2196/41753

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ishikawa N, Hattori N, Yokoyama A et al (2012) Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50(1):3–13. https://doi.org/10.1016/j.resinv.2012.02.001

    Article  PubMed  Google Scholar 

  13. Guan X, Zhao B, Guan X et al (2023) A benzochalcone derivative synchronously induces apoptosis and ferroptosis in pancreatic cancer cells. PeerJ. https://doi.org/10.7717/peerj.16291

    Article  PubMed  PubMed Central  Google Scholar 

  14. Endo S, Nishimura N, Kawano Y et al (2018) MUC1/KL-6 expression confers an aggressive phenotype upon myeloma cells. Biochem Biophys Res Commun 507(1–4):246–252. https://doi.org/10.1016/j.bbrc.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  15. Park HK, Yoon CS, Na YO et al (2023) Serum KL-6 levels predict the occurrence and severity of treatment-related interstitial lung disease in lung cancer. Sci Rep. https://doi.org/10.1038/s41598-023-45170-8

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fields A, Potel KN, Cabuhal R et al (2023) Mediators of systemic sclerosis-associated interstitial lung disease (SSc-ILD): systematic review and meta-analyses. Thorax 78(8):799–807. https://doi.org/10.1136/thorax-2022-219226

    Article  PubMed  Google Scholar 

  17. Wang Y, Chen S, Zheng S et al (2021) The role of lung ultrasound B-lines and serum KL-6 in the screening and follow-up of rheumatoid arthritis patients for an identification of interstitial lung disease: review of the literature, proposal for a preliminary algorithm, and clinical application to cases. Arthritis Res Ther. https://doi.org/10.1186/s13075-021-02586-9

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sokai A, Tanizawa K, Handa T et al (2017) Importance of serial changes in biomarkers in idiopathic pulmonary fibrosis. ERJ Open Res 3(3):00019–02016. https://doi.org/10.1183/23120541.00019-2016

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bessa V, Bonella F, Ohshimo S et al (2019) Changes in serum KL-6 levels are associated with the development of chronic lung allograft dysfunction in lung transplant recipients. Transpl Immunol 52:40–44. https://doi.org/10.1016/j.trim.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  20. d’Alessandro M, Cameli P, Refini RM et al (2020) Serum KL-6 concentrations as a novel biomarker of severe COVID-19. J Med Virol 92(10):2216–2220. https://doi.org/10.1002/jmv.26087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. d’Alessandro M, Bergantini L, Cameli P et al (2021) Serum concentrations of KL-6 in patients with IPF and lung cancer and serial measurements of KL-6 in IPF patients treated with antifibrotic therapy. Cancers (Basel) 13(4):689. https://doi.org/10.3390/cancers13040689

    Article  CAS  PubMed  Google Scholar 

  22. Cheng W, Zhou A, Zeng Y et al (2023) Prediction of hospitalization and mortality in patients with chronic obstructive pulmonary disease with the new global initiative for chronic obstructive lung disease 2023 group classification: a prospective cohort and a retrospective analysis. Int J Chron Obstruct Pulmon Dis 18:2341–2352. https://doi.org/10.2147/COPD.S429104

    Article  PubMed  PubMed Central  Google Scholar 

  23. Agustí A, Celli BR, Criner GJ et al (2023) Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Am J Respir Crit Care Med 207(7):819–837. https://doi.org/10.1164/rccm.202301-0106PP

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zheng L, Fei J, Feng CM et al (2021) Serum 8-iso-PGF2α predicts the severity and prognosis in patients with community-acquired pneumonia: a retrospective cohort study. Front Med (Lausanne). https://doi.org/10.3389/fmed.2021.633442

    Article  PubMed  Google Scholar 

  25. Fei J, Fu L, Cao W et al (2019) Low vitamin D status is associated with epithelial-mesenchymal transition in patients with chronic obstructive pulmonary disease. J Immunol 203(6):1428–1435. https://doi.org/10.4049/jimmunol.1900229

    Article  CAS  PubMed  Google Scholar 

  26. Xu Z, Wang XM, Cao P et al (2022) Serum IL-27 predicts the severity and prognosis in patients with community-acquired pneumonia: a prospective cohort study. Int J Med Sci 19(1):74–81. https://doi.org/10.7150/ijms.67028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Feng CM, Cheng JY, Xu Z et al (2021) Associations of serum resistin with the severity and prognosis in patients with community-acquired pneumonia. Front Immunol. https://doi.org/10.3389/fimmu.2021.703515

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fu L, Chen YH, Bo QL et al (2019) Lipopolysaccharide downregulates 11β-hydroxysteroid dehydrogenase 2 expression through inhibiting peroxisome proliferator-activated receptor-γ in placental trophoblasts. J Immunol 203(5):1198–1207. https://doi.org/10.4049/jimmunol.1900132

    Article  CAS  PubMed  Google Scholar 

  29. Fu L, Zhao H, Xiang Y et al (2021) Reactive oxygen species-evoked endoplasmic reticulum stress mediates 1-nitropyrene-induced epithelial-mesenchymal transition and pulmonary fibrosis. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.117134

    Article  PubMed  Google Scholar 

  30. Ohnishi H, Yokoyama A, Kondo K et al (2002) Comparative study of KL-6, surfactant protein-A, surfactant protein-D, and monocyte chemoattractant protein-1 as serum markers for interstitial lung diseases. Am J Respir Crit Care Med 165(3):378–381. https://doi.org/10.1164/ajrccm.165.3.2107134

    Article  PubMed  Google Scholar 

  31. Oyama T, Kohno N, Yokoyama A et al (1997) Detection of interstitial pneumonitis in patients with rheumatoid arthritis by measuring circulating levels of KL-6, a human MUC1 mucin. Lung 175(6):379–385. https://doi.org/10.1007/pl00007584

    Article  CAS  PubMed  Google Scholar 

  32. Nathani N, Perkins GD, Tunnicliffe W et al (2008) Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome. Crit Care 12(1):R12. https://doi.org/10.1186/cc6785

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ishikawa N, Hattori N, Kohno N et al (2015) Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. Int J Chron Obstruct Pulmon Dis. https://doi.org/10.2147/COPD.S74557

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kwok WC, Tam TCC, Ho JCM et al (2024) Hospitalized acute exacerbation in chronic obstructive pulmonary disease - impact on long-term renal outcomes. Respir Res. https://doi.org/10.1186/s12931-023-02635-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Liu H, Xie Y, Huang Y et al (2024) The association between blood eosinophils and clinical outcome of acute exacerbations of chronic obstructive pulmonary disease: a systematic review and meta-analysis. Respir Med 222:107501. https://doi.org/10.1016/j.rmed.2023.107501

    Article  PubMed  Google Scholar 

  36. Vogelmeier C, Anzueto A, & Barnes P (2020) The global strategy for diagnosis, management and prevention of COPD 2021 UPDATE.GOLD science committee members.

  37. Vianello A, Guarnieri G, Achille A et al (2023) Serum biomarkers of remodeling in severe asthma with fixed airway obstruction and the potential role of KL-6. Clin Chem Lab Med 61(10):1679–1687. https://doi.org/10.1515/cclm-2022-1323

    Article  CAS  PubMed  Google Scholar 

  38. Kambe M, Ohshimo S, Kohno N (2007) Immunity tests for respiratory diseases--SP-A, SP-D, KL-6. Rinsho Byori 55(4):381–387

    CAS  PubMed  Google Scholar 

  39. Brightling C, Greening N (2019) Airway inflammation in COPD: progress to precision medicine. Eur Respir J 54(2):1900651. https://doi.org/10.1183/13993003.00651-2019

    Article  CAS  PubMed  Google Scholar 

  40. Barnes PJ (2017) Cellular and molecular mechanisms of asthma and COPD. Clin Sci 131(13):1541–1558. https://doi.org/10.1042/CS20160487

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82100078, 82270071), Anhui Provincial Clinical Research Transformation Project (202204295107020014, 202204295107020056), Research Funds of Center for Big Data and Population Health of IHM (JKS2022007), the Scientific Research of Health Commission in Anhui Province (AHWJ2021b091) and the University Natural Science Research Project of Anhui Province (2023AH030117), Anhui Medical University Foundation (2021xkj159), Talent Project of Colleges and Universities in Anhui Province (gxyp2021169) and National Natural Science Foundation Incubation Program of the Second Affiliated Hospital of Anhui Medical University (2019GQFY06).

Author information

Authors and Affiliations

Authors

Contributions

LF, HZ, and JY contributed to its design and conception. YW, and JF drafted the manuscript. JX, Z-YC, Y-CM, and J-HW contributed to study design and carried out the studies. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jin Yang, Hui Zhao or Lin Fu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

This study was performed in compliance with the Declaration of Helsinki and was approved by the Ethics Committee of the Second Affiliated Hospital of Anhui Medical University (YX2021-146).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (DOCX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Fei, J., Xu, J. et al. Associations of the Serum KL-6 with Severity and Prognosis in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung 202, 245–255 (2024). https://doi.org/10.1007/s00408-024-00702-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-024-00702-5

Keywords

Navigation