Skip to main content

Advertisement

Log in

SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease

  • REVIEW: ROLE OF SIRT1 in COPD
  • Published:
Lung Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is a common, preventable, and treatable disease characterized by irreversible airflow obstruction and lung function decline. It is well established that COPD represents a major cause of morbidity and mortality globally. Due to the substantial economic and social burdens associated with COPD, it is necessary to discover new targets and develop novel beneficial therapies. Although the pathogenesis of COPD is complex and remains to be robustly elucidated, numerous studies have shown that oxidative stress, inflammatory responses, cell apoptosis, autophagy, and aging are involved in the pathogenesis of COPD. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase belonging to the silent information regulator 2 (Sir2) family. Multiple studies have indicated that SIRT1 plays an important role in oxidative stress, apoptosis, inflammation, autophagy, and cellular senescence, which contributes to the pathogenesis and development of COPD. This review aimed to discuss the functions and mechanisms of SIRT1 in the progression of COPD and concluded that SIRT1 activation might be a potential therapeutic strategy for COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vogelmeier C, Criner G, Martinez F, Anzueto A, Barnes P, Bourbeau J et al (2017) Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. Am J Respir Critic Care Med 195(5):557–582. https://doi.org/10.1164/rccm.201701-0218PP

    Article  CAS  Google Scholar 

  2. Hogea S, Tudorache E, Fildan A, Fira-Mladinescu O, Marc M, Oancea C (2020) Risk factors of chronic obstructive pulmonary disease exacerbations. Clin Respir J 14(3):183–197. https://doi.org/10.1111/crj.13129

    Article  PubMed  Google Scholar 

  3. Christenson SA, Smith BM, Bafadhel M, Putcha N (2022) Chronic obstructive pulmonary disease. Lancet 399(10342):2227–2242. https://doi.org/10.1016/s0140-6736(22)00470-6

    Article  PubMed  Google Scholar 

  4. Fu YS, Kang N, Yu Y, Mi Y, Guo J, Wu J et al (2022) Polyphenols, flavonoids and inflammasomes: the role of cigarette smoke in COPD. Eur Respir Rev. https://doi.org/10.1183/16000617.0028-2022

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lu Z, Coll P, Maitre B, Epaud R, Lanone S (2022) Air pollution as an early determinant of COPD. Eur Respir Rev. https://doi.org/10.1183/16000617.0059-2022

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martinez CH, Han MK (2012) Contribution of the environment and comorbidities to chronic obstructive pulmonary disease phenotypes. Med Clin North Am 96(4):713–727. https://doi.org/10.1016/j.mcna.2012.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eapen M, Myers S, Walters E, Sohal S (2017) Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med 11(10):827–839. https://doi.org/10.1080/17476348.2017.1360769

    Article  CAS  PubMed  Google Scholar 

  8. Brandsma CA, Van den Berge M, Hackett TL, Brusselle G, Timens W (2020) Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 250(5):624–635. https://doi.org/10.1002/path.5364

    Article  PubMed  Google Scholar 

  9. Ruaro B, Salton F, Braga L, Wade B, Confalonieri P, Volpe MC et al (2021) The history and mystery of alveolar epithelial type II cells: focus on their physiologic and pathologic role in lung. Int J Mol Sci. https://doi.org/10.3390/ijms22052566

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ferrera MC, Labaki WW, Han MK (2021) Advances in chronic obstructive pulmonary disease. Annu Rev Med 72:119–134. https://doi.org/10.1146/annurev-med-080919-112707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan S, Selemidis S, Bozinovski S, Vlahos R (2019) Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies. Pharmacol Ther 198:160–188. https://doi.org/10.1016/j.pharmthera.2019.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lv Y, Lin S, Peng F (2017) SIRT1 gene polymorphisms and risk of lung cancer. Cancer Manage Res 9:381–386. https://doi.org/10.2147/cmar.S142677

    Article  CAS  Google Scholar 

  13. Huang C, Jiang S, Gao S, Wang Y, Cai X, Fang J et al (2022) Sirtuins: research advances on the therapeutic role in acute kidney injury. Phytomedicine 101:154122. https://doi.org/10.1016/j.phymed.2022.154122

    Article  CAS  PubMed  Google Scholar 

  14. Khawar MB, Sohail AM, Li W (2022) SIRT1: a key player in male reproduction. Life. https://doi.org/10.3390/life12020318

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yang Y, Zhang S, Guan J, Jiang Y, Zhang J, Luo L et al (2022) SIRT1 attenuates neuroinflammation by deacetylating HSPA4 in a mouse model of Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 1868(5):166365. https://doi.org/10.1016/j.bbadis.2022.166365

    Article  CAS  PubMed  Google Scholar 

  16. Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y et al (2021) SIRT1: a potential therapeutic target in autoimmune diseases. Front Immunol 12:779177. https://doi.org/10.3389/fimmu.2021.779177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Voelter-Mahlknecht S, Mahlknecht U (2006) Cloning, chromosomal characterization and mapping of the NAD-dependent histone deacetylases gene sirtuin 1. Int J Mol Med 17(1):59–67

    CAS  PubMed  Google Scholar 

  18. Xu C, Wang L, Fozouni P, Evjen G, Chandra V, Jiang J et al (2020) SIRT1 is downregulated by autophagy in senescence and ageing. Nat Cell Biol 22(10):1170–1179. https://doi.org/10.1038/s41556-020-00579-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giblin W, Skinner M, Lombard D (2014) Sirtuins: guardians of mammalian healthspan. Trends Genet 30(7):271–286. https://doi.org/10.1016/j.tig.2014.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Frye R (2000) Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun 273(2):793–798. https://doi.org/10.1006/bbrc.2000.3000

    Article  CAS  PubMed  Google Scholar 

  21. Finkel T, Deng C, Mostoslavsky R (2009) Recent progress in the biology and physiology of sirtuins. Nature 460(7255):587–591. https://doi.org/10.1038/nature08197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kabiljo J, Murko C, Pusch O, Zupkovitz G (2019) Spatio-temporal expression profile of sirtuins during aging of the annual fish Nothobranchius furzeri. Gene Expr Patterns 33:11–19. https://doi.org/10.1016/j.gep.2019.05.001

    Article  CAS  PubMed  Google Scholar 

  23. Haigis M, Guarente L (2006) Mammalian sirtuins–Emerging roles in physiology, aging, and calorie restriction. Genes Dev 20(21):2913–2921. https://doi.org/10.1101/gad.1467506

    Article  CAS  PubMed  Google Scholar 

  24. Tang BL (2016) Sirt1 and the mitochondria. Mol Cells 39(2):87–95. https://doi.org/10.14348/molcells.2016.2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang Y, Yang J, Hong T, Chen X, Cui L (2019) SIRT2: controversy and multiple roles in disease and physiology. Ageing Res Rev 55:100961. https://doi.org/10.1016/j.arr.2019.100961

    Article  CAS  PubMed  Google Scholar 

  26. Zhang XY, Li W, Zhang JR, Li CY, Zhang J, Lv XJ (2022) Roles of sirtuin family members in chronic obstructive pulmonary disease. Respir Res 23(1):66. https://doi.org/10.1186/s12931-022-01986-y

    Article  PubMed  PubMed Central  Google Scholar 

  27. Korytina GF, Akhmadishina LZ, Aznabaeva YG, Kochetova OV, Zagidullin NS, Kzhyshkowska JG et al (2019) Associations of the NRF2/KEAP1 pathway and antioxidant defense gene polymorphisms with chronic obstructive pulmonary disease. Gene 692:102–112. https://doi.org/10.1016/j.gene.2018.12.061

    Article  CAS  PubMed  Google Scholar 

  28. Bakke PS, Zhu G, Gulsvik A, Kong X, Agusti AG, Calverley PM et al (2011) Candidate genes for COPD in two large data sets. Eur Respir J 37(2):255–263. https://doi.org/10.1183/09031936.00091709

    Article  CAS  PubMed  Google Scholar 

  29. Zhang M, Zhang Y, Roth M, Zhang L, Shi R, Yang X et al (2020) Sirtuin 3 inhibits airway epithelial mitochondrial oxidative stress in cigarette smoke-induced COPD. Oxid Med Cell Longev 2020:7582980. https://doi.org/10.1155/2020/7582980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen Y, Wang H, Luo G, Dai X (2014) SIRT4 inhibits cigarette smoke extracts-induced mononuclear cell adhesion to human pulmonary microvascular endothelial cells via regulating NF-κB activity. Toxicol Lett 226(3):320–327. https://doi.org/10.1016/j.toxlet.2014.02.022

    Article  CAS  PubMed  Google Scholar 

  31. Wang Y, Zhu Y, Xing S, Ma P, Lin D (2015) SIRT5 prevents cigarette smoke extract-induced apoptosis in lung epithelial cells via deacetylation of FOXO3. Cell Stress Chaperones 20(5):805–810. https://doi.org/10.1007/s12192-015-0599-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato R, Mizuno S, Kadowaki M, Shiozaki K, Akai M, Nakagawa K et al (2016) Sirt1 expression is associated with CD31 expression in blood cells from patients with chronic obstructive pulmonary disease. Respir Res 17(1):139. https://doi.org/10.1186/s12931-016-0452-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang S, Wright J, Bauter M, Seweryniak K, Kode A, Rahman I (2007) Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging. Am J Physiol Lung Cell Mol Physiol 292(2):L567–L576. https://doi.org/10.1152/ajplung.00308.2006

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal IK, Bajeli S, Sahu S, Bhat SA, Kumar A (2021) Hydrogen sulfide-induced GAPDH sulfhydration disrupts the CCAR2-SIRT1 interaction to initiate autophagy. Autophagy 17(11):3511–3529. https://doi.org/10.1080/15548627.2021.1876342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE et al (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105(9):3374–3379. https://doi.org/10.1073/pnas.0712145105

    Article  PubMed  PubMed Central  Google Scholar 

  36. He B, Chen Q, Zhou D, Wang L, Liu Z (2019) Role of reciprocal interaction between autophagy and endoplasmic reticulum stress in apoptosis of human bronchial epithelial cells induced by cigarette smoke extract. IUBMB Life 71(1):66–80. https://doi.org/10.1002/iub.1937

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, He N, Xing H, Sun Y, Ding J, Liu L (2020) Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis. J Recept Signal Transduct Res 40(4):388–394. https://doi.org/10.1080/10799893.2020.1738483

    Article  CAS  PubMed  Google Scholar 

  38. Yao H, Sundar I, Ahmad T, Lerner C, Gerloff J, Friedman A et al (2014) SIRT1 protects against cigarette smoke-induced lung oxidative stress via a FOXO3-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 306(9):L816–L828. https://doi.org/10.1152/ajplung.00323.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y et al (2020) Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 28:101356. https://doi.org/10.1016/j.redox.2019.101356

    Article  CAS  PubMed  Google Scholar 

  40. Gu C, Li Y, Xu WL, Yan JP, Xia YJ, Ma YY et al (2015) Sirtuin 1 activator SRT1720 protects against lung injury via reduction of type II alveolar epithelial cells apoptosis in emphysema. COPD 12(4):444–452. https://doi.org/10.3109/15412555.2014.974740

    Article  CAS  PubMed  Google Scholar 

  41. Ma N, Deng TT, Wang Q, Luo ZL, Zhu CF, Qiu JF et al (2019) Erythromycin regulates cigarette smoke-induced proinflammatory mediator release through sirtuin 1-nuclear factor κB axis in macrophages and mice lungs. Pathobiology 86(5–6):237–247. https://doi.org/10.1159/000500628

    Article  CAS  PubMed  Google Scholar 

  42. Peng Z, Zhang W, Qiao J, He B (2018) Melatonin attenuates airway inflammation via SIRT1 dependent inhibition of NLRP3 inflammasome and IL-1β in rats with COPD. Int Immunopharmacol 62:23–28. https://doi.org/10.1016/j.intimp.2018.06.033

    Article  CAS  PubMed  Google Scholar 

  43. Hwang JW, Chung S, Sundar IK, Yao H, Arunachalam G, McBurney MW et al (2010) Cigarette smoke-induced autophagy is regulated by SIRT1-PARP-1-dependent mechanism: implication in pathogenesis of COPD. Arch Biochem Biophys 500(2):203–209. https://doi.org/10.1016/j.abb.2010.05.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baker JR, Vuppusetty C, Colley T, Papaioannou AI, Fenwick P, Donnelly L et al (2016) Oxidative stress dependent microRNA-34a activation via PI3Kα reduces the expression of sirtuin-1 and sirtuin-6 in epithelial cells. Sci Rep 6:35871. https://doi.org/10.1038/srep35871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baker JR, Vuppusetty C, Colley T, Hassibi S, Fenwick PS, Donnelly LE et al (2019) MicroRNA-570 is a novel regulator of cellular senescence and inflammaging. Faseb j 33(2):1605–1616. https://doi.org/10.1096/fj.201800965R

    Article  CAS  PubMed  Google Scholar 

  46. Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T et al (2022) Regulation of lung epithelial cell senescence in smoking-induced COPD/emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF-1a. Int J Biol Sci 18(2):661–674. https://doi.org/10.7150/ijbs.65861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Forman HJ, Zhang H (2021) Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat Rev Drug Discov 20(9):689–709. https://doi.org/10.1038/s41573-021-00233-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hajam YA, Rani R, Ganie SY, Sheikh TA, Javaid D, Qadri SS et al (2022) Oxidative stress in human pathology and aging molecular mechanisms and perspectives. Cells. https://doi.org/10.3390/cells11030552

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pisoschi AM, Pop A, Iordache F, Stanca L, Predoi G, Serban AI (2021) Oxidative stress mitigation by antioxidants—An overview on their chemistry and influences on health status. Eur J Med Chem 209:112891. https://doi.org/10.1016/j.ejmech.2020.112891

    Article  CAS  PubMed  Google Scholar 

  50. Caliri AW, Tommasi S, Besaratinia A (2021) Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat Res Rev Mutat Res 787:108365. https://doi.org/10.1016/j.mrrev.2021.108365

    Article  CAS  PubMed  Google Scholar 

  51. Barnes PJ (2022) Oxidative stress in chronic obstructive pulmonary disease. Antioxidants. https://doi.org/10.3390/antiox11050965

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mumby S, Adcock IM (2022) Recent evidence from omic analysis for redox signalling and mitochondrial oxidative stress in COPD. J Inflamm 19(1):10. https://doi.org/10.1186/s12950-022-00308-9

    Article  CAS  Google Scholar 

  53. Taniguchi A, Tsuge M, Miyahara N, Tsukahara H (2021) Reactive oxygen species and antioxidative defense in chronic obstructive pulmonary disease. Antioxidants. https://doi.org/10.3390/antiox10101537

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hikichi M, Mizumura K, Maruoka S, Gon Y (2019) Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis 11(Suppl 17):S2129-s40. https://doi.org/10.21037/jtd.2019.10.43

    Article  Google Scholar 

  55. Song Q, Zhou ZJ, Cai S, Chen Y, Chen P (2022) Oxidative stress links the tumour suppressor p53 with cell apoptosis induced by cigarette smoke. Int J Environ Health Res 32(8):1745–1755. https://doi.org/10.1080/09603123.2021.1910211

    Article  CAS  PubMed  Google Scholar 

  56. de Groot L, van der Veen T, Martinez F, Hamann J, Lutter R, Melgert B (2019) Oxidative stress and macrophages: driving forces behind exacerbations of asthma and chronic obstructive pulmonary disease? Am J Physiol Lung Cell Mol Physiol 316(2):L369–L384. https://doi.org/10.1152/ajplung.00456.2018

    Article  CAS  PubMed  Google Scholar 

  57. Wiegman C, Michaeloudes C, Haji G, Narang P, Clarke C, Russell K et al (2015) Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 136(3):769–780. https://doi.org/10.1016/j.jaci.2015.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jiang Y, Wang X, Hu D (2017) Mitochondrial alterations during oxidative stress in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 12:1153–1162. https://doi.org/10.2147/copd.S130168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E et al (2020) Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol 36:101679. https://doi.org/10.1016/j.redox.2020.101679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Aggarwal T, Wadhwa R, Rohil V, Maurya P (2018) Biomarkers of oxidative stress and protein-protein interaction in chronic obstructive pulmonary disease. Arch Physiol Biochem 124(3):226–231. https://doi.org/10.1080/13813455.2017.1387796

    Article  CAS  PubMed  Google Scholar 

  61. Zinellu E, Zinellu A, Fois A, Fois S, Piras B, Carru C et al (2020) Reliability and usefulness of different biomarkers of oxidative stress in chronic obstructive pulmonary disease. Oxid Med Cell Longev 2020:4982324. https://doi.org/10.1155/2020/4982324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zinellu E, Zinellu A, Fois A, Carru C, Pirina P (2016) Circulating biomarkers of oxidative stress in chronic obstructive pulmonary disease: a systematic review. Respir Res 17(1):150. https://doi.org/10.1186/s12931-016-0471-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nucera F, Mumby S, Paudel KR, Dharwal V, Di Stefano A, Casolaro V et al (2022) Role of oxidative stress in the pathogenesis of COPD. Minerva Med 113(3):370–404. https://doi.org/10.23736/s0026-4806.22.07972-1

    Article  PubMed  Google Scholar 

  64. Li L, Wang H, Zhao S, Zhao Y, Chen Y, Zhang J et al (2022) Paeoniflorin ameliorates lipopolysaccharide-induced acute liver injury by inhibiting oxidative stress and inflammation via SIRT1/FOXO1a/SOD2 signaling in rats. Phytother Res. https://doi.org/10.1002/ptr.7471

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang Y, Li T, Pan M, Wang W, Huang W, Yuan Y et al (2022) SIRT1 prevents cigarette smoking-induced lung fibroblasts activation by regulating mitochondrial oxidative stress and lipid metabolism. J Transl Med 20(1):222. https://doi.org/10.1186/s12967-022-03408-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang AJ, Tang Y, Zhang J, Wang BJ, Xiao M, Lu G et al (2022) Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2. Redox Biol 52:102310. https://doi.org/10.1016/j.redox.2022.102310

    Article  CAS  Google Scholar 

  67. Feng K, Chen Z, Pengcheng L, Zhang S, Wang X (2019) Quercetin attenuates oxidative stress-induced apoptosis via SIRT1/AMPK-mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J Cell Physiol 234(10):18192–18205. https://doi.org/10.1002/jcp.28452

    Article  CAS  PubMed  Google Scholar 

  68. Yanagisawa S, Papaioannou A, Papaporfyriou A, Baker J, Vuppusetty C, Loukides S et al (2017) Decreased serum sirtuin-1 in COPD. Chest 152(2):343–352. https://doi.org/10.1016/j.chest.2017.05.004

    Article  PubMed  Google Scholar 

  69. Conti V, Corbi G, Manzo V, Malangone P, Vitale C, Maglio A et al (2018) SIRT1 activity in peripheral blood mononuclear cells correlates with altered lung function in patients with chronic obstructive pulmonary disease. Oxid Med Cell Longev 2018:9391261. https://doi.org/10.1155/2018/9391261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee KH, Jeong J, Koo YJ, Jang AH, Lee CH, Yoo CG (2017) Exogenous neutrophil elastase enters bronchial epithelial cells and suppresses cigarette smoke extract-induced heme oxygenase-1 by cleaving sirtuin 1. J Biol Chem 292(28):11970–11979. https://doi.org/10.1074/jbc.M116.771089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhao X, Wu Y (2021) Correlations of Silent Information Regulator of Transcription 1 (SIRT1) expression, inflammatory factors, and oxidative stress with pulmonary function in patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease (AECOPD). Med Sci Monit 27:e929046. https://doi.org/10.12659/msm.929046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hwang JW, Yao H, Caito S, Sundar IK, Rahman I (2013) Redox regulation of SIRT1 in inflammation and cellular senescence. Free Radic Biol Med 61:95–110. https://doi.org/10.1016/j.freeradbiomed.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  73. Conti V, Corbi G, Manzo V, Pelaia G, Filippelli A, Vatrella A (2015) Sirtuin 1 and aging theory for chronic obstructive pulmonary disease. Anal Cell Pathol 2015:897327. https://doi.org/10.1155/2015/897327

    Article  CAS  Google Scholar 

  74. Hwang JW, Rajendrasozhan S, Yao H, Chung S, Sundar IK, Huyck HL et al (2011) FOXO3 deficiency leads to increased susceptibility to cigarette smoke-induced inflammation, airspace enlargement, and chronic obstructive pulmonary disease. J Immunol 187(2):987–998. https://doi.org/10.4049/jimmunol.1001861

    Article  CAS  PubMed  Google Scholar 

  75. Di Vincenzo S, Heijink IH, Noordhoek JA, Cipollina C, Siena L, Bruno A et al (2018) SIRT1/FoxO3 axis alteration leads to aberrant immune responses in bronchial epithelial cells. J Cell Mol Med 22(4):2272–2282. https://doi.org/10.1111/jcmm.13509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dutta RK, Chinnapaiyan S, Rasmussen L, Raju SV, Unwalla HJ (2019) A neutralizing aptamer to TGFBR2 and miR-145 antagonism rescue cigarette smoke- and TGF-β-mediated CFTR expression. Mol Ther 27(2):442–455. https://doi.org/10.1016/j.ymthe.2018.11.017

    Article  CAS  PubMed  Google Scholar 

  77. Michaeloudes C, Sukkar M, Khorasani N, Bhavsar P, Chung K (2011) TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300(2):L295-304. https://doi.org/10.1152/ajplung.00134.2010

    Article  CAS  PubMed  Google Scholar 

  78. Casalena G, Daehn I, Bottinger E (2012) Transforming growth factor-beta, bioenergetics, and mitochondria in renal disease. Semin Nephrol 32(3):295–303. https://doi.org/10.1016/j.semnephrol.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  79. Krstic J, Trivanovic D, Mojsilovic S, Santibanez JF (2015) Transforming growth factor-beta and oxidative stress interplay: implications in tumorigenesis and cancer progression. Oxid Med Cell Longev 2015:654594. https://doi.org/10.1155/2015/654594

    Article  PubMed  PubMed Central  Google Scholar 

  80. Garcia-Vizcaino EM, Liarte S, Alonso-Romero JL, Nicolas FJ (2017) Sirt1 interaction with active Smad2 modulates transforming growth factor-beta regulated transcription. Cell Commun Signal 15(1):50. https://doi.org/10.1186/s12964-017-0205-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ren Y, Zhang Y, Fan L, Jiao Q, Wang Y, Wang Q (2019) The cullin4A is up-regulated in chronic obstructive pulmonary disease patient and contributes to epithelial-mesenchymal transition in small airway epithelium. Respir Res 20(1):84. https://doi.org/10.1186/s12931-019-1048-4

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lee HW, Jose CC, Cuddapah S (2021) Epithelial-mesenchymal transition: insights into nickel-induced lung diseases. Semin Cancer Biol 76:99–109. https://doi.org/10.1016/j.semcancer.2021.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  84. Gong J, Zhao H, Liu T, Li L, Cheng E, Zhi S et al (2019) Cigarette smoke reduces fatty acid catabolism, leading to apoptosis in lung endothelial cells: implication for pathogenesis of COPD. Front Pharmacol 10:941. https://doi.org/10.3389/fphar.2019.00941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sauler M, Bazan IS, Lee PJ (2019) Cell death in the lung: the apoptosis-necroptosis axis. Annu Rev Physiol 81:375–402. https://doi.org/10.1146/annurev-physiol-020518-114320

    Article  CAS  PubMed  Google Scholar 

  86. Vijayan VK (2013) Chronic obstructive pulmonary disease. Indian J Med Res 137(2):251–269

    CAS  PubMed  PubMed Central  Google Scholar 

  87. D’Agostini F, Balansky R, Izzotti A, Lubet R, Kelloff G, De Flora S (2001) Modulation of apoptosis by cigarette smoke and cancer chemopreventive agents in the respiratory tract of rats. Carcinogenesis 22(3):375–380. https://doi.org/10.1093/carcin/22.3.375

    Article  CAS  PubMed  Google Scholar 

  88. Murray L, Dunmore R, Camelo A, Da Silva C, Gustavsson M, Habiel D et al (2017) Acute cigarette smoke exposure activates apoptotic and inflammatory programs but a second stimulus is required to induce epithelial to mesenchymal transition in COPD epithelium. Respir Res 18(1):82. https://doi.org/10.1186/s12931-017-0565-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Segura-Valdez L, Pardo A, Gaxiola M, Uhal B, Becerril C, Selman M (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117(3):684–694. https://doi.org/10.1378/chest.117.3.684

    Article  CAS  PubMed  Google Scholar 

  90. Park J, Ryter S, Choi A (2007) Functional significance of apoptosis in chronic obstructive pulmonary disease. COPD 4(4):347–353. https://doi.org/10.1080/15412550701603775

    Article  PubMed  Google Scholar 

  91. Henson P, Vandivier R, Douglas I (2006) Cell death, remodeling, and repair in chronic obstructive pulmonary disease? Proc Am Thorac Soc 3(8):713–717. https://doi.org/10.1513/pats.200605-104SF

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Liu H, Ma L, Wu J, Wang K, Chen X (2009) Apoptosis of alveolar wall cells in chronic obstructive pulmonary disease patients with pulmonary emphysema is involved in emphysematous changes. J Huazhong Univ Sci Technolog Med Sci 29(4):466–469. https://doi.org/10.1007/s11596-009-0415-7

    Article  PubMed  Google Scholar 

  93. Song Q, Chen P, Liu XM (2021) The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir Res 22(1):39. https://doi.org/10.1186/s12931-021-01630-1

    Article  PubMed  PubMed Central  Google Scholar 

  94. Imai K, Mercer B, Schulman L, Sonett J, D’Armiento J (2005) Correlation of lung surface area to apoptosis and proliferation in human emphysema. Eur Respir J 25(2):250–258. https://doi.org/10.1183/09031936.05.00023704

    Article  CAS  PubMed  Google Scholar 

  95. Khanahmadi M, Manafi B, Tayebinia H, Karimi J, Khodadadi I (2020) Downregulation of Sirt1 is correlated to upregulation of p53 and increased apoptosis in epicardial adipose tissue of patients with coronary artery disease. Excli j 19:1387–1398. https://doi.org/10.17179/excli2020-2423

    Article  PubMed  PubMed Central  Google Scholar 

  96. Yu Y, Li L, Yu W, Guan Z (2022) Fluoride exposure suppresses proliferation and enhances endoplasmic reticulum stress and apoptosis pathways in hepatocytes by downregulating sirtuin-1. Biomed Res Int 2022:7380324. https://doi.org/10.1155/2022/7380324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li M, Li SC, Dou BK, Zou YX, Han HZ, Liu DX et al (2020) Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 41(8):1025–1032. https://doi.org/10.1038/s41401-020-0386-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Luo G, Jian Z, Zhu Y, Zhu Y, Chen B, Ma R et al (2019) Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 43(5):2033–2043. https://doi.org/10.3892/ijmm.2019.4125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Qiu D, Song S, Wang Y, Bian Y, Wu M, Wu H et al (2022) NAD(P)H: quinone oxidoreductase 1 attenuates oxidative stress and apoptosis by regulating Sirt1 in diabetic nephropathy. J Transl Med 20(1):44. https://doi.org/10.1186/s12967-021-03197-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen Y, Zhou F, Liu H, Li J, Che H, Shen J et al (2021) SIRT1, a promising regulator of bone homeostasis. Life Sci 269:119041. https://doi.org/10.1016/j.lfs.2021.119041

    Article  CAS  PubMed  Google Scholar 

  101. Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L (2021) Sirt1 activation negatively regulates overt apoptosis in Mtb-infected macrophage through Bax. Int Immunopharmacol 91:107283. https://doi.org/10.1016/j.intimp.2020.107283

    Article  CAS  PubMed  Google Scholar 

  102. He B, Zhang W, Qiao J, Peng Z, Chai X (2019) Melatonin protects against COPD by attenuating apoptosis and endoplasmic reticulum stress via upregulating SIRT1 expression in rats. Can J Physiol Pharmacol 97(5):386–391. https://doi.org/10.1139/cjpp-2018-0529

    Article  CAS  PubMed  Google Scholar 

  103. Zhang L, Guo X, Xie W, Li Y, Ma M, Yuan T et al (2015) Resveratrol exerts an anti-apoptotic effect on human bronchial epithelial cells undergoing cigarette smoke exposure. Mol Med Rep 11(3):1752–1758. https://doi.org/10.3892/mmr.2014.2925

    Article  CAS  PubMed  Google Scholar 

  104. Zhang L, Luo B, Ting Y, He S, Xie L, Sun S (2020) SIRT1 attenuates endoplasmic reticulum stress and apoptosis in rat models of COPD. Growth Factors 38(2):94–104. https://doi.org/10.1080/08977194.2020.1810029

    Article  CAS  PubMed  Google Scholar 

  105. Hernández Borrero LJ, El-Deiry WS (1876) (2021) Tumor suppressor p53: biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer 1:188556. https://doi.org/10.1016/j.bbcan.2021.188556

    Article  CAS  Google Scholar 

  106. Mizuno S, Ishizaki T, Kadowaki M, Akai M, Shiozaki K, Iguchi M et al (2017) p53 signaling pathway polymorphisms associated with emphysematous changes in patients with COPD. Chest 152(1):58–69. https://doi.org/10.1016/j.chest.2017.03.012

    Article  PubMed  Google Scholar 

  107. Lee H, Jung TY, Lim SH, Choi EJ, Lee J, Min DS (2021) Phospholipase D2 is a positive regulator of sirtuin 1 and modulates p53-mediated apoptosis via sirtuin 1. Exp Mol Med 53(9):1287–1297. https://doi.org/10.1038/s12276-021-00659-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Audrito V, Vaisitti T, Rossi D, Gottardi D, D’Arena G, Laurenti L et al (2011) Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Can Res 71(13):4473–4483. https://doi.org/10.1158/0008-5472.Can-10-4452

    Article  CAS  Google Scholar 

  109. Rahman S, Islam R (2011) Mammalian Sirt1: insights on its biological functions. Cell Commun Signal 9:11. https://doi.org/10.1186/1478-811x-9-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lam E, Francis R, Petkovic M (2006) FOXO transcription factors: key regulators of cell fate. Biochem Soc Trans 34:722–726. https://doi.org/10.1042/bst0340722

    Article  CAS  PubMed  Google Scholar 

  111. Giannakou M, Partridge L (2004) The interaction between FOXO and SIRT1: tipping the balance towards survival. Trends Cell Biol 14(8):408–412. https://doi.org/10.1016/j.tcb.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  112. Brunet A, Sweeney L, Sturgill J, Chua K, Greer P, Lin Y et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303(5666):2011–2015. https://doi.org/10.1126/science.1094637

    Article  CAS  PubMed  Google Scholar 

  113. Brightling C, Greening N (2019) Airway inflammation in COPD: progress to precision medicine. Eur Respir J. https://doi.org/10.1183/13993003.00651-2019

    Article  PubMed  Google Scholar 

  114. Aghasafari P, George U, Pidaparti R (2019) A review of inflammatory mechanism in airway diseases. Inflamm Res 68(1):59–74. https://doi.org/10.1007/s00011-018-1191-2

    Article  CAS  PubMed  Google Scholar 

  115. Zuo L, Wijegunawardana D (2021) Redox role of ROS and inflammation in pulmonary diseases. Adv Exp Med Biol 1304:187–204. https://doi.org/10.1007/978-3-030-68748-9_11

    Article  CAS  PubMed  Google Scholar 

  116. Shyam Prasad Shetty B, Chaya SK, Kumar VS, Mahendra M, Jayaraj BS, Lokesh KS et al (2021) Inflammatory Biomarkers Interleukin 1 Beta (IL-1β) and Tumour Necrosis Factor Alpha (TNF-α) are differentially elevated in tobacco smoke associated copd and biomass smoke associated COPD. Toxics. https://doi.org/10.3390/toxics9040072

    Article  PubMed  PubMed Central  Google Scholar 

  117. Singh S, Verma SK, Kumar S, Ahmad MK, Nischal A, Singh SK et al (2018) Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol Lett 196:1–10. https://doi.org/10.1016/j.imlet.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  118. Fermont JM, Masconi KL, Jensen MT, Ferrari R, Di Lorenzo VAP, Marott JM et al (2019) Biomarkers and clinical outcomes in COPD: a systematic review and meta-analysis. Thorax 74(5):439–446. https://doi.org/10.1136/thoraxjnl-2018-211855

    Article  PubMed  Google Scholar 

  119. Mulvanny A, Pattwell C, Beech A, Southworth T, Singh D (2022) Validation of sputum biomarker immunoassays and cytokine expression profiles in COPD. Biomedicines. https://doi.org/10.3390/biomedicines10081949

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zeng YY, Hu WP, Zuo YH, Wang XR, Zhang J (2019) Altered serum levels of type I collagen turnover indicators accompanied by IL-6 and IL-8 release in stable COPD. Int J Chron Obstruct Pulmon Dis 14:163–168. https://doi.org/10.2147/copd.S188139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y et al (2022) Regulation of SIRT1 and its roles in inflammation. Front Immunol 13:831168. https://doi.org/10.3389/fimmu.2022.831168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sun HJ, Xiong SP, Cao X, Cao L, Zhu MY, Wu ZY et al (2021) Polysulfide-mediated sulfhydration of SIRT1 prevents diabetic nephropathy by suppressing phosphorylation and acetylation of p65 NF-κB and STAT3. Redox Biol 38:101813. https://doi.org/10.1016/j.redox.2020.101813

    Article  CAS  PubMed  Google Scholar 

  123. Labiner HE, Sas KM, Baur JA, Sims CA (2022) SIRT1 deletion increases inflammation and mortality in sepsis. J Trauma Acute Care Surg. https://doi.org/10.1097/ta.0000000000003751

    Article  PubMed  Google Scholar 

  124. Liu X, Zheng H (2021) Modulation of Sirt1 and FoxO1 on hypothalamic leptin-mediated sympathetic activation and inflammation in diet-induced obese rats. J Am Heart Assoc 10(14):e020667. https://doi.org/10.1161/jaha.120.020667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shatoor AS, Al HS (2021) Astaxanthin Ameliorates high-fat diet-induced cardiac damage and fibrosis by upregulating and activating SIRT1. Saudi J Biol Sci 28(12):7012–7021. https://doi.org/10.1016/j.sjbs.2021.07.079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen M, Chen Z, Huang D, Sun C, Xie J, Chen T et al (2020) Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway. Pulm Pharmacol Ther 65:102000. https://doi.org/10.1016/j.pupt.2021.102000

    Article  CAS  PubMed  Google Scholar 

  127. Alharbi KS, Fuloria NK, Fuloria S, Rahman SB, Al-Malki WH, Javed Shaikh MA et al (2021) Nuclear factor-kappa B and its role in inflammatory lung disease. Chem Biol Interact 345:109568. https://doi.org/10.1016/j.cbi.2021.109568

    Article  CAS  PubMed  Google Scholar 

  128. Benjamin JT, Plosa EJ, Sucre JM, van der Meer R, Dave S, Gutor S et al (2021) Neutrophilic inflammation during lung development disrupts elastin assembly and predisposes adult mice to COPD. J Clin Invest. https://doi.org/10.1172/jci139481

    Article  PubMed  PubMed Central  Google Scholar 

  129. Wu H, Miao Y, Shang LQ, Chen RL, Yang SM (2020) MiR-31 aggravates inflammation and apoptosis in COPD rats via activating the NF-κB signaling pathway. Eur Rev Med Pharmacol Sci 24(18):9626–9632. https://doi.org/10.26355/eurrev_202009_23051

    Article  CAS  PubMed  Google Scholar 

  130. Won M, Byun H, Park K, Hur G (2016) Post-translational control of NF-κB signaling by ubiquitination. Arch Pharmacal Res 39(8):1075–1084. https://doi.org/10.1007/s12272-016-0772-2

    Article  CAS  Google Scholar 

  131. de Gregorio E, Colell A, Morales A, Marí M (2020) Relevance of SIRT1-NF-κB axis as therapeutic target to ameliorate inflammation in liver disease. Int J Mol Sci. https://doi.org/10.3390/ijms21113858

    Article  PubMed  PubMed Central  Google Scholar 

  132. Mendes KL, Lelis DF, Santos SHS (2017) Nuclear sirtuins and inflammatory signaling pathways. Cytokine Growth Factor Rev 38:98–105. https://doi.org/10.1016/j.cytogfr.2017.11.001

    Article  CAS  PubMed  Google Scholar 

  133. Min JH, Kim MG, Kim SM, Park JW, Chun W, Lee HJ et al (2020) 3,4,5-Trihydroxycinnamic acid exerts a protective effect on pulmonary inflammation in an experimental animal model of COPD. Int Immunopharmacol 85:106656. https://doi.org/10.1016/j.intimp.2020.106656

    Article  CAS  PubMed  Google Scholar 

  134. Zhang J, Xu Q, Sun W, Zhou X, Fu D, Mao L (2021) New insights into the role of NLRP3 inflammasome in pathogenesis and treatment of chronic obstructive pulmonary disease. J Inflamm Res 14:4155–4168. https://doi.org/10.2147/jir.S324323

    Article  PubMed  PubMed Central  Google Scholar 

  135. Li Y, Yang X, He Y, Wang W, Zhang J, Zhang W et al (2017) Negative regulation of NLRP3 inflammasome by SIRT1 in vascular endothelial cells. Immunobiology 222(3):552–561. https://doi.org/10.1016/j.imbio.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  136. Tian Q, Xu M, He B (2021) Histidine ameliorates elastase- and lipopolysaccharide-induced lung inflammation by inhibiting the activation of the NLRP3 inflammasome. Acta Biochim Biophys Sin 53(8):1055–1064. https://doi.org/10.1093/abbs/gmab072

    Article  CAS  PubMed  Google Scholar 

  137. Ichimiya T, Yamakawa T, Hirano T, Yokoyama Y, Hayashi Y, Hirayama D et al (2020) Autophagy and autophagy-related diseases: a review. Int J Mol Sci. https://doi.org/10.3390/ijms21238974

    Article  PubMed  PubMed Central  Google Scholar 

  138. Soreng K, Neufeld TP, Simonsen A (2018) Membrane trafficking in autophagy. Int Rev Cell Mol Biol 336:1–92. https://doi.org/10.1016/bs.ircmb.2017.07.001

    Article  CAS  PubMed  Google Scholar 

  139. Morishita H, Kanda Y, Kaizuka T, Chino H, Nakao K, Miki Y et al (2020) Autophagy is required for maturation of surfactant-containing lamellar bodies in the lung and swim bladder. Cell Rep 33(10):108477. https://doi.org/10.1016/j.celrep.2020.108477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Barnes PJ, Baker J, Donnelly LE (2022) Autophagy in asthma and chronic obstructive pulmonary disease. Clin Sci 136(10):733–746. https://doi.org/10.1042/cs20210900

    Article  CAS  Google Scholar 

  141. Vishnupriya S, Priya Dharshini LC, Sakthivel KM, Rasmi RR (2020) Autophagy markers as mediators of lung injury-implication for therapeutic intervention. Life Sci 260:118308. https://doi.org/10.1016/j.lfs.2020.118308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lv X, Li K, Hu Z (2020) Chronic obstructive pulmonary disease and autophagy. Adv Exp Med Biol 1207:559–567. https://doi.org/10.1007/978-981-15-4272-5_39

    Article  CAS  PubMed  Google Scholar 

  143. Racanelli AC, Choi AMK, Choi ME (2020) Autophagy in chronic lung disease. Prog Mol Biol Transl Sci 172:135–156. https://doi.org/10.1016/bs.pmbts.2020.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhuang H, Li N, Chen S, Shen Y, Zhan W, Xu X et al (2020) Correlation between level of autophagy and frequency of CD8(+) T cells in patients with chronic obstructive pulmonary disease. J Int Med Res 48(9):300060520952638. https://doi.org/10.1177/0300060520952638

    Article  CAS  PubMed  Google Scholar 

  145. Wang G, Zhou H, Strulovici-Barel Y, Al-Hijji M, Ou X, Salit J et al (2017) Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium. Autophagy 13(7):1205–1220. https://doi.org/10.1080/15548627.2017.1301327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tulen CBM, Wang Y, Beentjes D, Jessen PJJ, Ninaber DK, Reynaert NL et al (2022) Dysregulated mitochondrial metabolism upon cigarette smoke exposure in various human bronchial epithelial cell models. Dis Model Mech. https://doi.org/10.1242/dmm.049247

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu Y, Xu J, Liu T, Wu J, Zhao J, Wang J et al (2021) FSTL1 aggravates cigarette smoke-induced airway inflammation and airway remodeling by regulating autophagy. BMC Pulm Med 21(1):45. https://doi.org/10.1186/s12890-021-01409-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Huang HQ, Li N, Li DY, Jing D, Liu ZY, Xu XC et al (2021) Autophagy promotes cigarette smoke-initiated and elastin-driven bronchitis-like airway inflammation in mice. Front Immunol 12:594330. https://doi.org/10.3389/fimmu.2021.594330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang L, Xu C, Johansen T, Berger S, Dou Z (2020) SIRT1—A new mammalian substrate of nuclear autophagy. Autophagy. https://doi.org/10.1080/15548627.2020.1860541

    Article  PubMed  PubMed Central  Google Scholar 

  150. Tang F, Ling C (2019) Curcumin ameliorates chronic obstructive pulmonary disease by modulating autophagy and endoplasmic reticulum stress through regulation of SIRT1 in a rat model. J Int Med Res 47(10):4764–4774. https://doi.org/10.1177/0300060519869459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Yuan P, Hu Q, He X, Long Y, Song X, Wu F et al (2020) Laminar flow inhibits the Hippo/YAP pathway via autophagy and SIRT1-mediated deacetylation against atherosclerosis. Cell Death Dis 11(2):141. https://doi.org/10.1038/s41419-020-2343-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Deng Z, Sun M, Wu J, Fang H, Cai S, An S et al (2021) SIRT1 attenuates sepsis-induced acute kidney injury via Beclin1 deacetylation-mediated autophagy activation. Cell Death Dis 12(2):217. https://doi.org/10.1038/s41419-021-03508-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kim JY, Mondaca-Ruff D, Singh S, Wang Y (2022) SIRT1 and autophagy: implications in endocrine disorders. Front Endocrinol 13:930919. https://doi.org/10.3389/fendo.2022.930919

    Article  Google Scholar 

  154. Tao Z, Shi L, Parke J, Zheng L, Gu W, Dong XC et al (2021) Sirt1 coordinates with ERα to regulate autophagy and adiposity. Cell Death Discov 7(1):53. https://doi.org/10.1038/s41420-021-00438-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Mu N, Lei Y, Wang Y, Wang Y, Duan Q, Ma G et al (2019) Inhibition of SIRT1/2 upregulates HSPA5 acetylation and induces pro-survival autophagy via ATF4-DDIT4-mTORC1 axis in human lung cancer cells. Apoptosis 24(9–10):798–811. https://doi.org/10.1007/s10495-019-01559-3

    Article  CAS  PubMed  Google Scholar 

  156. Choudhury G, MacNee W (2017) Role of inflammation and oxidative stress in the pathology of ageing in COPD: potential therapeutic interventions. COPD 14(1):122–135. https://doi.org/10.1080/15412555.2016.1214948

    Article  PubMed  Google Scholar 

  157. Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, Sathirapongsasuti JF et al (2013) Histone deacetylase 6-mediated selective autophagy regulates COPD-associated cilia dysfunction. J Clin Investig 123(12):5212–5230. https://doi.org/10.1172/jci69636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kadam A, Jubin T, Roychowdhury R, Begum R (2020) Role of PARP-1 in mitochondrial homeostasis. Biochim Biophys Acta Gen Subj 1864(10):129669. https://doi.org/10.1016/j.bbagen.2020.129669

    Article  CAS  PubMed  Google Scholar 

  159. Kang M, Park S, Park SH, Lee HG, Park JH (2022) A double-edged sword: the two faces of PARylation. Int J Mol Sci. https://doi.org/10.3390/ijms23179826

    Article  PubMed  PubMed Central  Google Scholar 

  160. Walko TD 3rd, Di Caro V, Piganelli J, Billiar TR, Clark RS, Aneja RK (2015) Poly(ADP-ribose) polymerase 1-sirtuin 1 functional interplay regulates LPS-mediated high mobility group box 1 secretion. Mol Med 20(1):612–624. https://doi.org/10.2119/molmed.2014.00156

    Article  PubMed  PubMed Central  Google Scholar 

  161. Wang Y, Sui Y, Niu Y, Liu D, Xu Q, Liu F et al (2022) PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF-MSC senescence and apoptosis. Stem Cell Rev Rep. https://doi.org/10.1007/s12015-022-10425-w

    Article  PubMed  PubMed Central  Google Scholar 

  162. Dharwal V, Naura AS (2018) PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol 150:24–34. https://doi.org/10.1016/j.bcp.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  163. Nakahira K, Cloonan SM, Mizumura K, Choi AM, Ryter SW (2014) Autophagy: a crucial moderator of redox balance, inflammation, and apoptosis in lung disease. Antioxid Redox Signal 20(3):474–494. https://doi.org/10.1089/ars.2013.5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Shi J, Yin N, Xuan LL, Yao CS, Meng AM, Hou Q (2012) Vam3, a derivative of resveratrol, attenuates cigarette smoke-induced autophagy. Acta Pharmacol Sin 33(7):888–896. https://doi.org/10.1038/aps.2012.73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cho SJ, Stout-Delgado HW (2020) Aging and lung disease. Annu Rev Physiol 82:433–459. https://doi.org/10.1146/annurev-physiol-021119-034610

    Article  CAS  PubMed  Google Scholar 

  166. Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC (2021) The aging lung: physiology, disease, and immunity. Cell 184(8):1990–2019. https://doi.org/10.1016/j.cell.2021.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Barnes PJ, Baker J, Donnelly LE (2019) Cellular senescence as a mechanism and target in chronic lung diseases. Am J Respir Crit Care Med 200(5):556–564. https://doi.org/10.1164/rccm.201810-1975TR

    Article  CAS  PubMed  Google Scholar 

  168. MacNee W (2016) Is chronic obstructive pulmonary disease an accelerated aging disease? Ann Am Thorac Soc. https://doi.org/10.1513/AnnalsATS.201602-124AW

    Article  PubMed  PubMed Central  Google Scholar 

  169. López-Otín C, Blasco M, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Easter M, Bollenbecker S, Barnes JW, Krick S (2020) Targeting aging pathways in chronic obstructive pulmonary disease. Int J Mol Sci. https://doi.org/10.3390/ijms21186924

    Article  PubMed  PubMed Central  Google Scholar 

  171. Hamsanathan S, Alder JK, Sellares J, Rojas M, Gurkar AU, Mora AL (2019) Cellular senescence: the trojan horse in chronic lung diseases. Am J Respir Cell Mol Biol 61(1):21–30. https://doi.org/10.1165/rcmb.2018-0410TR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Woldhuis RR, Heijink IH, van den Berge M, Timens W, Oliver BGG, de Vries M et al (2021) COPD-derived fibroblasts secrete higher levels of senescence-associated secretory phenotype proteins. Thorax 76(5):508–511. https://doi.org/10.1136/thoraxjnl-2020-215114

    Article  PubMed  Google Scholar 

  173. Aghali A, Koloko Ngassie ML, Pabelick CM, Prakash YS (2022) Cellular senescence in aging lungs and diseases. Cells. https://doi.org/10.3390/cells11111781

    Article  PubMed  PubMed Central  Google Scholar 

  174. Cottage CT, Peterson N, Kearley J, Berlin A, Xiong X, Huntley A et al (2019) Targeting p16-induced senescence prevents cigarette smoke-induced emphysema by promoting IGF1/Akt1 signaling in mice. Commun Biol 2:307. https://doi.org/10.1038/s42003-019-0532-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Guan R, Cai Z, Wang J, Ding M, Li Z, Xu J et al (2019) Hydrogen sulfide attenuates mitochondrial dysfunction-induced cellular senescence and apoptosis in alveolar epithelial cells by upregulating sirtuin 1. Aging 11(24):11844–11864. https://doi.org/10.18632/aging.102454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Yan P, Li Z, Xiong J, Geng Z, Wei W, Zhang Y et al (2021) LARP7 ameliorates cellular senescence and aging by allosterically enhancing SIRT1 deacetylase activity. Cell Rep 37(8):110038. https://doi.org/10.1016/j.celrep.2021.110038

    Article  CAS  PubMed  Google Scholar 

  177. Paschalaki KE, Starke RD, Hu Y, Mercado N, Margariti A, Gorgoulis VG et al (2013) Dysfunction of endothelial progenitor cells from smokers and chronic obstructive pulmonary disease patients due to increased DNA damage and senescence. Stem Cells 31(12):2813–2826. https://doi.org/10.1002/stem.1488

    Article  CAS  PubMed  Google Scholar 

  178. Ahmad T, Sundar IK, Tormos AM, Lerner CA, Gerloff J, Yao H et al (2017) Shelterin telomere protection protein 1 reduction causes telomere attrition and cellular senescence via Sirtuin 1 deacetylase in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 56(1):38–49. https://doi.org/10.1165/rcmb.2016-0198OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chen C, Zhou M, Ge Y, Wang X (2020) SIRT1 and aging related signaling pathways. Mech Ageing Dev 187:111215. https://doi.org/10.1016/j.mad.2020.111215

    Article  CAS  PubMed  Google Scholar 

  180. Barnes PJ (2019) Small airway fibrosis in COPD. Int J Biochem Cell Biol 116:105598. https://doi.org/10.1016/j.biocel.2019.105598

    Article  CAS  PubMed  Google Scholar 

  181. Sarker RSJ, Conlon TM, Morrone C, Srivastava B, Konyalilar N, Verleden SE et al (2019) CARM1 regulates senescence during airway epithelial cell injury in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol 317(5):L602–L614. https://doi.org/10.1152/ajplung.00441.2018

    Article  CAS  PubMed  Google Scholar 

  182. Li BS, Zhu RZ, Lim SH, Seo JH, Choi BM (2021) Apigenin alleviates oxidative stress-induced cellular senescence via modulation of the SIRT1-NAD+-CD38 Axis. Am J Chin Med 49(5):1235–1250. https://doi.org/10.1142/s0192415x21500592

    Article  CAS  PubMed  Google Scholar 

  183. Hodge G, Tran HB, Reynolds PN, Jersmann H, Hodge S (2020) Lymphocyte senescence in COPD is associated with decreased sirtuin 1 expression in steroid resistant pro-inflammatory lymphocytes. Ther Adv Respir Dis 14:1753466620905280. https://doi.org/10.1177/1753466620905280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S et al (2016) Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig 54(6):397–406. https://doi.org/10.1016/j.resinv.2016.03.010

    Article  PubMed  Google Scholar 

  185. Diener C, Keller A, Meese E (2022) Emerging concepts of miRNA therapeutics: from cells to clinic. Trends Genet 38(6):613–626. https://doi.org/10.1016/j.tig.2022.02.006

    Article  CAS  PubMed  Google Scholar 

  186. Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K (2017) Senescence-associated MicroRNAs. Int Rev Cell Mol Biol 334:177–205. https://doi.org/10.1016/bs.ircmb.2017.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Hayek H, Kosmider B, Bahmed K (2021) The role of miRNAs in alveolar epithelial cells in emphysema. Biomed Pharmacother 143:112216. https://doi.org/10.1016/j.biopha.2021.112216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yao H, Rahman I (2012) Perspectives on translational and therapeutic aspects of SIRT1 in inflammaging and senescence. Biochem Pharmacol 84(10):1332–1339. https://doi.org/10.1016/j.bcp.2012.06.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yao H, Chung S, Hwang JW, Rajendrasozhan S, Sundar IK, Dean DA et al (2012) SIRT1 protects against emphysema via FOXO3-mediated reduction of premature senescence in mice. J Clin Investig 122(6):2032–2045. https://doi.org/10.1172/jci60132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gu C, Zhang Q, Ni D, Xiao QF, Cao LF, Fei CY et al (2020) Therapeutic effects of SRT2104 on lung injury in rats with emphysema via reduction of type II alveolar epithelial cell senescence. COPD 17(4):444–451. https://doi.org/10.1080/15412555.2020.1797657

    Article  PubMed  Google Scholar 

  191. Di Filippo E, Giampietro L, De Filippis B, Balaha M, Ferrone V, Locatelli M et al (2020) Synthesis and biological evaluation of halogenated-stilbenols as promising antiaging agents. Molecules. https://doi.org/10.3390/molecules25235770

    Article  PubMed  PubMed Central  Google Scholar 

  192. Salla M, Pandya V, Bhullar K, Kerek E, Wong Y, Losch R et al (2020) Resveratrol and resveratrol-aspirin hybrid compounds as potent intestinal anti-inflammatory and anti-tumor drugs. Molecules. https://doi.org/10.3390/molecules25173849

    Article  PubMed  PubMed Central  Google Scholar 

  193. Wang XL, Li T, Li JH, Miao SY, Xiao XZ (2017) The effects of resveratrol on inflammation and oxidative stress in a rat model of chronic obstructive pulmonary disease. Molecules. https://doi.org/10.3390/molecules22091529

    Article  PubMed  PubMed Central  Google Scholar 

  194. Navarro S, Reddy R, Lee J, Warburton D, Driscoll B (2017) Inhaled resveratrol treatments slow ageing-related degenerative changes in mouse lung. Thorax 72(5):451–459. https://doi.org/10.1136/thoraxjnl-2016-208964

    Article  PubMed  Google Scholar 

  195. Wang S, He N, Xing H, Sun Y, Ding J, Liu L (2020) Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1alpha/NF-kappaB signaling axis. J Recept Signal Transduct Res 40(4):388–394. https://doi.org/10.1080/10799893.2020.1738483

    Article  CAS  PubMed  Google Scholar 

  196. Zhang XF, Ding MJ, Cheng C, Zhang Y, Xiang SY, Lu J et al (2020) Andrographolide attenuates oxidative stress injury in cigarette smoke extract exposed macrophages through inhibiting SIRT1/ERK signaling. Int Immunopharmacol 81:106230. https://doi.org/10.1016/j.intimp.2020.106230

    Article  CAS  PubMed  Google Scholar 

  197. Shin NR, Ko JW, Kim JC, Park G, Kim SH, Kim MS et al (2020) Role of melatonin as an SIRT1 enhancer in chronic obstructive pulmonary disease induced by cigarette smoke. J Cell Mol Med 24(1):1151–1156. https://doi.org/10.1111/jcmm.14816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review, MJEditor (www.mjeditor.com) for providing English editing services during the preparation of this manuscript, and BioRender (BioRender.com) for the Figure 1.

Funding

This work was supported by the National Natural Science Foundation of China [81500036]; Scientific Research Fund of Hunan Provincial Education Department [21B0005]; Hunan Provincial Natural Science Foundation [2022JJ30917]; Undergraduate Education and Teaching Reform Project of Central South University [2021JGB061]; and Postgraduate Education and Teaching Reform Project of Central South University [2021jy156].

Author information

Authors and Affiliations

Authors

Contributions

SL contributed to writing of the original draft preparation. QH contributed to writing, reviewing, and editing of the manuscript. BH contributed to supervision and writing, reviewing, and editing of the manuscript.

Corresponding author

Correspondence to Baimei He.

Ethics declarations

Conflict of interest

All authors certified that they had no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Huang, Q. & He, B. SIRT1 as a Potential Therapeutic Target for Chronic Obstructive Pulmonary Disease. Lung 201, 201–215 (2023). https://doi.org/10.1007/s00408-023-00607-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-023-00607-9

Keywords

Navigation