Skip to main content
Log in

Differential Regulation of ASICs and TRPV1 by Zinc in Rat Bronchopulmonary Sensory Neurons

  • Published:
Lung Aims and scope Submit manuscript

Abstract

Purpose

Zinc has been known to act as a signaling molecule that regulates a variety of neuronal functions. In this study, we aimed to study the effect of zinc on two populations of acid-sensitive ion channels, acid-sensing ion channels (ASICs), and transient receptor potential vanilloid receptor-1 (TRPV1), in vagal bronchopulmonary sensory neurons.

Methods

Rat vagal sensory neurons innervating lungs and airways were retrogradely labeled with a fluorescent tracer. Whole-cell perforated patch-clamp recordings were carried out in primarily cultured bronchopulmonary sensory neurons. The acid-evoked ASIC and TRPV1 currents were measured and compared between before and after the zinc pretreatment.

Results

ASIC currents were induced by a pH drop from 7.4 to 6.8 or 6.5 in the presence of capsazepine (10 µM), a specific TRPV1 antagonist. Pretreatment with zinc (50 or 300 µM, 2 min) displayed different effects on the two distinct phenotypes of ASIC currents: a marked potentiation on ASIC channels with fast kinetics of activation and inactivation or no significant effect on ASIC currents with slow activation and inactivation. On the other hand, pretreatment with zinc significantly inhibited the acid (pH 5.5 or 5.3)-induced TRPV1 currents. The inhibition was abolished by intracellular chelation of zinc by TPEN (25 µM), indicating that intracellular accumulation of zinc was likely required for its inhibitory effect on TRPV1 channels.

Conclusions

Our study showed that zinc differentially regulates the activities of ASICs and TRPV1 channels in rat vagal bronchopulmonary sensory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Weiss JH, Sensi SL, Koh JY (2000) Zn(2+): a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci 21:395–401

    Article  CAS  PubMed  Google Scholar 

  2. Baron A, Schaefer L, Lingueglia E, Champigny G, Lazdunski M (2001) Zn2+ and H+ are coactivators of acid-sensing ion channels. J Biol Chem 276:35361–35367

    Article  CAS  PubMed  Google Scholar 

  3. Frassinetti S, Bronzetti G, Caltavuturo L, Cini M, Croce CD (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25:597–610

    Article  CAS  PubMed  Google Scholar 

  4. Nozaki C, Vergnano AM, Filliol D, Ouagazzal AM, Le Goff A, Carvalho S, Reiss D, Gaveriaux-Ruff C, Neyton J, Paoletti P, Kieffer BL (2009) Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nat Neurosci 14:1017–1022

    Article  Google Scholar 

  5. Gu Y, Barry J, Gu C (2013) Kv3 channel assembly, trafficking and activity are regulated by zinc through different binding sites. J Physiol 591:2491–2507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Sun HS, Hui K, Lee DW, Feng ZP (2007) Zn2+ sensitivity of high- and low-voltage activated calcium channels. Biophys J 93:1175–1183

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Mathie A, Sutton GL, Clarke CE, Veale EL (2006) Zinc and copper: pharmacological probes and endogenous modulators of neuronal excitability. Pharmacol Ther 111:567–583

    Article  CAS  PubMed  Google Scholar 

  8. Sensi SL, Paoletti P, Bush AI, Sekler I (2009) Zinc in the physiology and pathology of the CNS. Nat Rev Neurosci 10:780–791

    Article  CAS  PubMed  Google Scholar 

  9. Hunt JF, Fang K, Malik R, Snyder A, Malhotra N, Platts-Mills TA, Gaston B (2000) Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med 161:694–699

    Article  CAS  PubMed  Google Scholar 

  10. Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S (2002) pH in expired breath condensate of patients with inflammatory airways diseases. Am J Respir Crit Care Med 165:1364–1370

    Article  PubMed  Google Scholar 

  11. Kodric M, Shah AN, Fabbri LM, Confalonieri M (2007) An investigation of airway acidification in asthma using induced sputum: a study of feasibility and correlation. Am J Respir Crit Care Med 175:905–910

    Article  CAS  PubMed  Google Scholar 

  12. Reeh PW, Steen KH (1996) Tissue acidosis in nociception and pain. Prog Brain Res 113:143–151

    Article  CAS  PubMed  Google Scholar 

  13. Mantyh PW, Clohisy DR, Koltzenburg M, Hunt SP (2002) Molecular mechanisms of cancer pain. Nat Rev Cancer 2:201–209

    Article  CAS  PubMed  Google Scholar 

  14. Krishtal O (2003) The ASICs: signaling molecules? Modulators? Trends Neurosci 26:477–483

    Article  CAS  PubMed  Google Scholar 

  15. Geppetti P, Materazzi S, Nicoletti P (2006) The transient receptor potential vanilloid 1: role in airway inflammation and disease. Eur J Pharmacol 533:207–214

    Article  CAS  PubMed  Google Scholar 

  16. Lee LY, Gu Q (2009) Role of TRPV1 in inflammation-induced airway hypersensitivity. Curr Opin Pharmacol 9:243–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ricciardolo FL, Gaston B, Hunt J (2004) Acid stress in the pathology of asthma. J Allergy Clin Immunol 113:610–619

    Article  CAS  PubMed  Google Scholar 

  18. Kollarik M, Ru F, Undem BJ (2007) Acid-sensitive vagal sensory pathways and cough. Pulm Pharmacol Ther 20:402–411

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gu Q, Lee LY (2011) Airway irritation and cough evoked by acid: from humans to ion channels. Curr Opin Pharmacol 11:238–247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Gu Q, Vysotskaya ZV, Moss CR 2nd, Kagira MK, Gilbert CA (2013) Calcium-sensing receptor in rat vagal bronchopulmonary sensory neurons regulates the function of the capsaicin receptor TRPV1. Exp Physiol 98:1631–1642

    Article  CAS  PubMed  Google Scholar 

  21. Jiang Q, Li MH, Papasian CJ, Branigan D, Xiong ZG, Wang JQ, Chu XP (2009) Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum. Neuroscience 162:55–66

    Article  CAS  PubMed  Google Scholar 

  22. Jiang Q, Inoue K, Wu X, Papasian CJ, Wang JQ, Xiong ZG, Chu XP (2011) Cysteine 149 in the extracellular finger domain of acid-sensing ion channel 1b subunit is critical for zinc-mediated inhibition. Neuroscience 193:89–99

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Gu Q, Lin RL (2010) Heavy metals zinc, cadmium, and copper stimulate pulmonary sensory neurons via direct activation of TRPA1. J Appl Physiol 108:891–897

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Gu Q, Lee LY (2006) Characterization of acid-signaling in rat vagal pulmonary sensory neurons. Am J Physiol Lung Cell Mol Physiol 291:L58–L65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Gu Q, Lee LY (2010) Regulation of acid signaling in rat pulmonary sensory neurons by protease-activated receptor-2. Am J Physiol Lung Cell Mol Physiol 298:L454–L461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Bessac BF, Jordt SE (2008) Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23:360–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Akopian AN (2011) Regulation of nociceptive transmission at the periphery via TRPA1-TRPV1 interactions. Curr Pharm Biotechnol 12:89–94

    Article  CAS  PubMed  Google Scholar 

  28. Wemmie JA, Price MP, Welsh MJ (2006) Acid-sensing ion channels: advances, questions and therapeutic opportunities. Trends Neurosci 29:578–586

    Article  CAS  PubMed  Google Scholar 

  29. Xu TL, Xiong ZG (2007) Dynamic regulation of acid-sensing ion channels by extracellular and intracellular modulators. Curr Med Chem 14:1753–1763

    Article  CAS  PubMed  Google Scholar 

  30. Sherwood TW, Frey EN, Askwith CC (2012) Structure and activity of the acid-sensing ion channels. Am J Physiol Cell Physiol 303:C699–C710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Holzer P (2009) Acid-sensitive ion channels and receptors. Handb Exp Pharmacol 194:283–332

    Article  CAS  PubMed  Google Scholar 

  32. Benson CJ, Xie J, Wemmie JA, Price MP, Henss JM, Welsh MJ, Snyder PM (2002) Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons. Proc Natl Acad Sci USA 99:2338–2343

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Chu XP, Wemmie JA, Wang WZ, Zhu XM, Saugstad JA, Price MP, Simon RP, Xiong ZG (2004) Subunit-dependent high-affinity zinc inhibition of acid-sensing ion channels. J Neurosci 24:8678–8689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Poirot O, Berta T, Decosterd I, Kellenberger S (2006) Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 576:215–234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Jiang Q, Papasian CJ, Wang JQ, Xiong ZG, Chu XP (2010) Inhibitory regulation of acid-sensing ion channel 3 by zinc. Neuroscience 169:574–583

    Article  CAS  PubMed  Google Scholar 

  36. Caterina MJ, Julius D (2001) The vanilloid receptor: a molecular gateway to the pain pathway. Annu Rev Neurosci 24:487–517

    Article  CAS  PubMed  Google Scholar 

  37. Lee LY, Pisarri TE (2001) Afferent properties and reflex functions of bronchopulmonary C-fibers. Respir Physiol 125:47–65

    Article  CAS  PubMed  Google Scholar 

  38. Pecze L, Winter Z, Jósvay K, Ötvös F, Kolozsi C, Vizler C, Budai D, Letoha T, Dombi G, Szakonyi G, Oláh Z (2013) Divalent heavy metal cations block the TRPV1 Ca(2+)channel. Biol Trace Elem Res 151:451–461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Welch JM, Simon SA, Reinhart PH (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc Natl Acad Sci USA 97:13889–13894

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    Article  CAS  PubMed  Google Scholar 

  41. Sugiura T, Kasai M, Katsuya H, Mizumura K (2003) Thermal properties of acid-induced depolarization in cultured rat small primary afferent neurons. Neurosci Lett 350:109–112

    Article  CAS  PubMed  Google Scholar 

  42. Ni D, Lee LY (2008) Lack of potentiating effect of increasing temperature on responses to chemical activators in vagal sensory neurons isolated from TRPV1-null mice. Am J Physiol Lung Cell Mol Physiol 295:L897–L904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Júnior WB, Alexandre-Moreira MS, Alves MA, Perez-Rebolledo A, Parrilha GL, Castellano EE, Piro OE, Barreiro EJ, Lima LM, Beraldo H (2011) Analgesic and anti-inflammatory activities of salicylaldehyde 2-chlorobenzoyl hydrazine (H(2)LASSBio-466), salicylaldehyde 4-chlorobenzoyl hydrazone (H(2)LASSBio-1064) and their zinc(II) complexes. Molecules 16:6902–6915

    Article  PubMed  Google Scholar 

  44. Tamba BI, Leon MM, Petreus T (2013) Common trace elements alleviate pain in an experimental mouse model. J Neurosci Res 91:554–561

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by grants from American Heart Association, MEDCEN Community Health Foundation, and Mercer University School of Medicine.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihai Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskaya, Z.V., Moss, C.R. & Gu, Q. Differential Regulation of ASICs and TRPV1 by Zinc in Rat Bronchopulmonary Sensory Neurons. Lung 192, 927–934 (2014). https://doi.org/10.1007/s00408-014-9634-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-014-9634-1

Keywords

Navigation