Skip to main content
Log in

Effect of Lung Fibrosis on Glycogen Content in Different Extrapulmonary Tissues

  • Published:
Lung Aims and scope Submit manuscript

An Erratum to this article was published on 28 February 2014

Abstract

Purpose

Patients with pulmonary fibrosis often exhibit reduced lung function and diminished health-related quality of life. Studies have shown that paraquat-induced, extrapulmonary, acute lung injury affects the metabolic profile of glycogen content in different tissues. The purpose of the present study was to investigate whether the process of pulmonary fibrosis induced by continuous exposure to the toxic herbicide paraquat or by a local insult from bleomycin affects the glycogen content in tissues.

Methods

In the paraquat experiment, Wistar rats (n = 5 per group) received either saline (controls) or an intraperitoneal injection of a paraquat solution (7.0 mg/kg; experimental group) once a week for 4 weeks. In the bleomycin experiment, Balb/c mice (n = 5 per group) received either saline (controls) or 6.25 U/kg of bleomycin through intratracheal instillation in single dose (experimental group). Glycogen content in different tissues (mg/g tissue) was measured using the anthrone reagent. The lungs submitted to histopathological and quantitative analyses of fibrosis.

Results

Paraquat-induced fibrosis led to lower glycogen content in the gastrocnemius muscle (2.7 ± 0.1 vs. 3.4 ± 0.1; 79 %) compared with the controls, whereas no changes in glycogen content were found in the diaphragm or heart. Bleomycin-induced fibrosis led to lower glycogen content in the diaphragm (0.43 ± 0.02 vs. 0.79 ± 0.09, 54 %), gastrocnemius muscle (0.62 ± 0.11 vs. 1.18 ± 0.06, 52 %), and heart (0.68 ± 0.11 vs. 1.39 ± 0.1, 49 %) compared with the controls (p < 0.05). Moreover, the area of fibrous connective tissue (μm2) in the lungs was significantly increased in paraquat-induced fibrosis (3,463 ± 377 vs. 565 ± 89) and bleomycin-induced fibrosis (3,707 ± 433.9 vs. 179 ± 51.28) compared with the controls.

Conclusions

The findings suggest that the effects of fibrogenesis in the lungs are not limited to local alterations but also lead to a reduction in glycogen content in the heart and other muscles. This reduction could partially explain the impaired muscle performance found in patients with pulmonary fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Shi W, Xu J, Warburton D (2009) Development, repair and fibrosis: what is common and why it matters. Respirology 14:656–665. doi:10.1111/j.1440-1843.2009.01565.x

    Article  PubMed Central  PubMed  Google Scholar 

  2. Kottmann RM, Hogan CM, Phipps RP, Sime PJ (2009) Determinants of initiation and progression of idiopathic pulmonary fibrosis. Respirology 14:917–933. doi:10.1111/j.1440-1843.2009.01624.x

    Article  PubMed  Google Scholar 

  3. du Bois RM, Weycker D, Albera C, Bradford WZ, Costabel U, Kartashov A, Lancaster L, Noble PW, Sahn SA, Szwarcberg J, Thomeer M, Valeyre D, King TE Jr (2011) Six-minute-walk test in idiopathic pulmonary fibrosis: test validation and minimal clinically important difference. Am J Respir Crit Care Med 183:1231–1237. doi:10.1164/rccm.201007-1179OC

    Article  PubMed  Google Scholar 

  4. Mura M, Ferretti A, Ferro O, Zompatori M, Cavalli A, Schiavina M, Fabbri M (2006) Functional predictors of exertional dyspnea, 6-min walking distance and HRCT fibrosis score in idiopathic pulmonary fibrosis. Respiration 73:495–502. doi:10.1159/000089656

    Article  PubMed  Google Scholar 

  5. Hsia CC (1999) Cardiopulmonary limitations to exercise in restrictive lung disease. Med Sci Sports Exerc 31:S28–S32

    Article  CAS  PubMed  Google Scholar 

  6. Prasse A, Müller-Quernheim J (2009) Non-invasive biomarkers in pulmonary fibrosis. Respirology 14:788–795. doi:10.1111/j.1440-1843.2009.01600.x

    Article  PubMed  Google Scholar 

  7. Borges EL, Pinheiro MB, Eleto-Silva A, Caliari MV, Rodrigues-Machado MG (2009) Glycogen content is affected differently in acute pulmonary and extrapulmonary lung injury. Hum Exp Toxicol 28:583–590. doi:10.1177/0960327109106998

    Article  CAS  PubMed  Google Scholar 

  8. Rodrigues-Machado MG, Silva GC, Pinheiro MB, Caliari MV, Borges EL (2010) Effects of sepsis-induced acute lung injury on glycogen content in different tissues. Exp Lung Res 36:302–306. doi:10.3109/01902141003609983

    Article  CAS  Google Scholar 

  9. Silva MF, Saldiva PH (1998) Paraquat poisoning: an experimental model of dose-dependent acute lung injury due to surfactant dysfunction. Braz J Med Biol Res 31:445–450

    Article  CAS  PubMed  Google Scholar 

  10. Lacerda ACR, Rodrigues-Machado MG, Mendes PL, Novaes RD, Carvalho GM, Zin WA, Gripp F, Coimbra CC (2009) Paraquat (PQ)-induced pulmonary fibrosis increases exercise metabolic cost, reducing aerobic performance in rats. J Toxicol Sci 34:671–679. doi:10.2131/jts.34.671

    Article  PubMed  Google Scholar 

  11. Dasta JF (1978) Paraquat poisoning: a review. Am J Hosp Pharm 35:1368–1372

    CAS  PubMed  Google Scholar 

  12. Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379–L399. doi:10.1152/ajplung.00010.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L152–L160. doi:10.1152/ajplung.00313.2007

    Article  CAS  PubMed  Google Scholar 

  14. Satomi Y, Sakaguchi K, Kasahara Y, Akahori F (2007) Novel and extensive aspects of paraquat-induced pulmonary fibrogenesis: comparative and time-course microarray analyses in fibrogenic and non-fibrogenic rats. J Toxicol Sci 32:529–553. doi:10.2131/jts.32.529

    Article  CAS  PubMed  Google Scholar 

  15. Satomi Y, Tsuchiya W, Miura D, Kasahara Y, Akahori F (2006) DNA microarray analysis of pulmonary fibrosis three months after exposure to paraquat in rats. J Toxicol Sci 31:345–350. doi:10.2131/jts.31.345

    Article  CAS  PubMed  Google Scholar 

  16. Satomi Y, Tsuchiya W, Mihara K, Ota M, Kasahara Y, Arahori F (2004) Gene expression analysis of the lung following paraquat administration in rats using DNA. J Toxicol Sci 29:91–100. doi:10.2131/jts.29.91

    Article  CAS  PubMed  Google Scholar 

  17. Rocco PR, Negri EM, Kurtz PM, Vasconcellos FP, Silva GH, Capelozzi VL, Romero PV, Zin WA (2001) Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am J Respir Crit Care Med 164:1067–1071

    Article  CAS  PubMed  Google Scholar 

  18. Akahori F, Oehme FW (1983) Inhibition of collagen synthesis as a treatment for paraquat poisoning. Vet Hum Toxicol 25:321–327

    CAS  PubMed  Google Scholar 

  19. Prata LO, Oliveira FM, Ribeiro TM, Almeida PW, Cardoso JA, Rodrigues-Machado Mda G, Caliari MV (2012) Exercise attenuates pulmonary injury in mice with bleomycin-induced pulmonary fibrosis. Exp Biol Med 237:873–883. doi:10.1258/ebm.2012.011334

    Article  CAS  Google Scholar 

  20. Sáez MJ, Lagunas R (1976) Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling conditions and recommendations for obtaining true levels. Mol Cell Biochem 13:73–78

    Article  PubMed  Google Scholar 

  21. Hassid WZ, Abraham S (1957) Determination of glycogen with anthrone reagent. In: Abelson JN, Simon MI, Colowisch SP, Kaplan NO (eds) Methods in enzymology. Section I: carbohydrates, vol 3. Academic Press, New York, pp 35–36

    Google Scholar 

  22. Chua F, Gaudle J, Laurent GJ (2005) Pulmonary fibrosis searching for model answers. Am J Respir Cell Mol Biol 33:9–13. doi:10.1165/rcmb.2005-0062TR

    Article  CAS  PubMed  Google Scholar 

  23. Moeller A, Ask K, Warburton D, Gauldie J, Kolb M (2008) The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int J Biochem Cell Biol 40:362–382. doi:10.1016/j.biocel.2007.08.011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Spruit MA, Janssen DJ, Franssen FM, Wouters EF (2009) Rehabilitation and palliative care in lung fibrosis. Respirology 14:781–787. doi:10.1111/j.1440-1843.2009.01599.x

    Article  PubMed  Google Scholar 

  25. Nishiyma O, Taniguchi H, Kondoh Y, Kimura T, Ogawa T, Watanabe F, Nishimura K (2005) Health-related quality of life in patients with idiopathic pulmonary fibrosis. What is the main contributing factor? Respir Med 99:408–414. doi:10.1016/j.rmed.2004.09.005

    Article  Google Scholar 

  26. Swigris JJ, Kuschner WG, Jacobs SS, Wilson SR, Gould MK (2005) Health-related quality of life in patients with idiopathic pulmonary fibrosis: a systematic review. Thorax 60:588–594. doi:10.1136/thx.2004.035220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tzanakis N, Samiou M, Lambiri I, Antoniou K, Siafakas N, Bouros D (2005) Evaluation of health-related quality-of-life and dyspnea scales in patients with idiopathic pulmonary fibrosis. Correlation with pulmonary function tests. Eur J Intern Med 16:105–112. doi:10.1016/j.ejim.2004.09.013

    Article  PubMed  Google Scholar 

  28. De Vries J, Kessels BL, Drent M (2001) Quality of life of idiopathic pulmonary fibrosis patients. Eur Resp J 17:954–961

    Article  Google Scholar 

  29. Martinez TY, Pereira CAC, Santos ML, Ciconnelli RM, Guimaraes SM, Martinez JAB (2000) Evaluation of the short-form 36-item questionnaire to measure health-related quality of life in patients with idiopathic pulmonary fibrosis. Chest 117:1627–1632

    Article  CAS  PubMed  Google Scholar 

  30. Zocrato LB, Capettini LS, Rezende BA, Silva JF, Rodrigues-Machado MG, Cortes SF, Lemos VS (2010) Increased expression of endothelial iNOS accounts for hyporesponsiveness of pulmonary artery to vasoconstrictors after paraquat poisoning. Toxicol In Vitro 24:1019–1025. doi:10.1016/j.tiv.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  31. Elenkov IJ, Chrousos GP (2006) Stress system—organization, physiology and immunoregulation. NeuroImmunoModulation 13:257–267. doi:10.1159/000104853

    Article  CAS  PubMed  Google Scholar 

  32. Heindl S, Lehnert M, Criée CP, Hasenfuss G, Andreas S (2001) Market sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare no competing interests.

Ethical standards

The authors declare that the experiments comply with the current laws of the country in which they were performed. All experiments were performed in compliance with the Ethical Principles in Animal Experimentation adopted by the local Ethics Committee on Animal Experimentation (CETEA/UFMG process No. 60/2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Lage Borges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borges, E.L., de Barros Pinheiro, M., Prata, L.O. et al. Effect of Lung Fibrosis on Glycogen Content in Different Extrapulmonary Tissues. Lung 192, 125–131 (2014). https://doi.org/10.1007/s00408-013-9539-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00408-013-9539-4

Keywords

Navigation