Skip to main content
Log in

Levi-Civita simplifies Einstein. The Ricci rotation coefficients and unified field theories

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

This paper concerns late 1920 s attempts to construct unitary theories of gravity and electromagnetism. A first attempt using a non-standard connection—with torsion and zero-curvature—was carried out by Albert Einstein in a number of publications that appeared between 1928 and 1931. In 1929, Tullio Levi-Civita discussed Einstein’s geometric structure and deduced a new system of differential equations in a Riemannian manifold endowed with what is nowadays known as Levi-Civita connection. He attained an important result: Maxwell’s electromagnetic equations and the gravitational equations were obtained exactly, while Einstein had deduced them only as a first order approximation. A main feature of Levi-Civita’s theory is the essential use of the Ricci’s rotation coefficients, introduced by Gregorio Ricci Curbastro many years before. We trace the history of Ricci’s coefficients that are still used today, and highlight their geometric and mechanical meaning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that all data analysed during this study are included in this published article.

Notes

  1. For a synthesis of Einstein’s contributions to unified field theories see Goenner (2005); a more detailed analysis is in Vizgin (1994), especially chapter 5. For a more general interpretation of Einstein’s program see Sauer (2014).

  2. For an overview of these debates see for examples Goldstein and Ritter (2003), Goenner (2004) and Goenner (2005).

  3. On Levi-Civita’s life and work see Nastasi and Tazzioli (2005) and Goodstein (2018).

  4. This term will be often recalled and clarified along the present paper.

  5. Levi-Civita’s Archives (Fondo Levi-Civita) are partly held by the Biblioteca dell’Accademia Nazionale dei Lincei (ANL) and partly by the Ceccherini-Silberstein family.

  6. In 1872, Eugenio Beltrami (1835–1900) published an article in which he introduced expressions that we now recognise as special cases of Ricci’s rotation coefficients for a system of congruences in an ordinary space (BeltramiI 1872). However, Beltrami did not attribute any particular significance to these expressions.

  7. Note that Beltrami and Ricci Curbastro called “congruences of curves” what nowadays are denoted by “vector fields.”

  8. In what follows, we use the original notations by Ricci Curbastro and Levi-Civita.

  9. Since Hopf’s seminal theorem, a compact manifold \(V_{n}\) has a vector field without zeros if and only if the Euler characteristic \(\chi (V_{n})\) of \(V_{n}\) vanishes, see Hopf (1927), a right topological care should be assumed concerning with the global existence of the tetrads, that are n-tuple of linearly independent vector fields; e.g., this does not work on the 2-sphere: \(\chi ({\mathbb S}^2)=2\).

  10. This notation, used by Ricci Curbastro and Levi-Civita in many papers, is ambiguous. Robert Hermann calls it “awkward and inconvenient”, since if \(\lambda _{h}^{j}\) and \(\lambda _{h\vert k}\) are considered, the j, k indices are not tensorial in nature but they are simple counting indices. Hermann observes that these notations are enormously simplified in modern differential geometry by considering a “repère mobile” introduced by Cartan. (Hermann 1975, p. 70) For a modern interpretation of the theory of congruences see Hermann (1975), especially pp. 80–81.

  11. See in particular chapter III (Eisenhart 1926).

  12. This link was first highlighted in the Levi-Civita article on parallel transport (Levi-Civita 1917). Further developments can be found in an article by his student at the University of Padua (Carpanese 1919).

  13. In modern notation, Christoffel’s symbols are denoted by \( \left\{ \hspace{-.1cm}\begin{array}{cc}i \\ j \ l \end{array}\hspace{-.1cm}\right\} \), which differ from Levi-Civita’s notation [see (10)]. Similarly, the vector \(x'_{j}\) is today expressed in the contravariant form \(x'^{j}\). This choice makes the summation more natural with respect to indices than for notation (10).

  14. The calculation can be easily reproduced.

  15. In fact, \(\gamma _{hkn}\textrm{d}s\) is the covariant increment of \(\lambda _{h}\) along \(\lambda _{n}\) and then projected on \(\lambda _{k}\). In modern notations: \(\gamma _{hkn}\textrm{d}s=(\nabla _{\lambda _{n}}\lambda _h \textrm{d}s)\cdot \lambda _k\). Similar reasoning is used by Levi-Civita in the analysis of the “pyramids” (see later).

  16. Here, Levi-Civita distinguished the vector fields in bold type from the congruence lines tangent to them.

  17. Notices about Onicescu’s life and work are in Iosifescu (1986).

  18. The letters by Lipka to Levi-Civita are contained in Fondo Levi-Civita, Biblioteca Nazionale dei Lincei, Rome (ANL in the following).

  19. This letter is kept by the Ceccherini-Silberstein family.

  20. For more details on his contributions to the mathematical theory of insurance see Bru (1994). On 27 January 1927, Dubourdieu communicated to Levi-Civita his decision to abandon his university career for a job at the “Banque de Paris et des Pays Bas" (now Paribas) (letter contained in Fondo Levi-Civita, ANL).

  21. See the letter dated 24 agosto 1927 in Fondo Levi-Civita, ANL. On Hlavatý’s life and work see Durnová et al. (1894); especially on his early career see Durnová and Sauer (2019).

  22. For more details on Fernparallelism and its implications in the historical development of unified field theory, see Goldstein and Ritter (2003), Sauer (2006) and Goenner (2005).

  23. See Debever (1979), Doc. I; also published in Kormos-Buchwald et al. (2021),Vol. 16, Doc. 520.

  24. See also the pamphlet entitled Relativité and published by Cartan in the book collection directed by P. Langevin in 1932 (Cartan 1932) in which Cartan related his theory of teleparallelism to Einstein’s unified field equations. In particular, Cartan pointed out that “l’espace riemannien classique, avec parallélisme à la Levi-Civita, est doué d’une courbure, mais n’a pas de torsion; le nouvel espace est, au contraire, doué d’une torsion, mais n’a pas de courbure.” (Cartan 1932, p. 9)

  25. Letter by Einstein to Cartan dated 10 Mai 1929. See Debever (1979), Doc. II.

  26. As noticed by several authors, Einstein’s papers contain typographical errors in these equations. As Einstein’s notations are often different in his different works, we have standardised them here.

  27. Einstein seems to favour the “infinitesimal parallel transport" introduced by Weyl (1921), pp. 112–114; see also Scholz (1995).

  28. For a modern characterization of teleparallelism as a geometric structure see Sauer’s paper (Sauer 2006), especially Appendix B pp. 436–437. In particular, Sauer explains that, in modern terms, Einstein’s mathematical structure leads to the definition of a second, uniquely defined, metric compatible connection, i.e. the usual Levi-Civita connection.

  29. In some other papers, Einstein made use of a variational method by imposing that the variation of the action integral \(\int H \textrm{d}t \) with respect to the components of the tetrad field vanishes. Einstein’s overdetermination approach and his variational approach are described in Sauer (2006), especially section 4. The term overdetermination (“Überstimmung”) was employed by Einstein himself from the early 1920 s to refer to this method. See Einstein’s 1923 article “Bietet die Feldtheorie Möglichkeiten für die Lösung des Quantenproblems.” Einstein (1923) Further details are in Stachel (1993, pp. 284–285).

  30. The detailed procedure followed by Einstein in his 1929 paper to determine the field equations is described in Sauer (2006). In particular, Einstein used Latin letters instead of the Greek letters for the lower indices of the tensor density, i.e. \(\mathfrak {B}_{kl}^{\alpha }\) instead of \(\mathfrak {B}_{\kappa \lambda }^{\alpha }\).

  31. After Landau and Lifschitz (1962), Hawking and Ellis (1973), (Misner et al. 1973), and many others the semi-colon became the widespread notation.

  32. The article was published thanks to Einstein’s intercession, see the letter by Levi-Civita to Einstein dated 21 March 1929 and published in Kormos-Buchwald et al. (2021, pp. 665–666.)

  33. Levi-Civita gave an explanation in the pages 17 and 18 of Levi-Civita (1929c): gravitational equations in tetrad form is more natural for the determination of the tetrad vectors themselves, which are now the true unknowns of the equations.

  34. Levi-Civita defined the \(\epsilon \)-system whose covariant and contravariant components are \(\epsilon _{\mu \nu \rho \sigma }\), \(\epsilon ^{\mu \nu \rho \sigma }\), respectively. They are equal to zero if the 4 indices are not all different. The other components have respectively values \(\pm {\sqrt{\vert g \vert }}\), \(\pm {\frac{1}{\sqrt{\vert g \vert }}}\) the upper or lower sign being taken according as the permutation is even or odd, see p. 10 of Levi-Civita (1929c). Nowadays, \(\epsilon _{\mu \nu \rho \sigma }\,\textrm{d}x^\mu \wedge \textrm{d}x^\nu \wedge x^\rho \wedge \textrm{d}x^\sigma \) is referred as the ‘volume’ 4-form in \(V_4\) inherited from the given metric g. Finally, in the formula \(p^{\mu }=\epsilon ^{\mu \nu \rho \sigma } H_{\nu \rho \vert \sigma }\) Levi-Civita denotes the covariant derivative by the ‘vertical bar’: as already observed, this is not his usual notation.

  35. He introduced the Pfaffian tensor-divergence of a skew-symmetrical tensor H as \(Div^{*}H=p\) whose components are \(p^{\mu }=\epsilon ^{\mu \nu \rho \sigma } H_{\nu \rho \vert \sigma }\). Levi-Civita observed that \(p^{\mu }\)’s vanish identically if and only if \(H_{\nu \rho }\)’s coincide with the coefficients of the bilinear covariants of a Pfaffian form. By utilizing modern terminology, we see that Levi-Civita arrived substantially to the definition of Hodge-star operator: in \(V_n\), given a k-tensor \(T_{\alpha _1, \dots , \alpha _k}\), its Hodge-star transformed is (up to the sign) the tensor \(T^{*\beta _1,\dots , \beta _{n-k}}=\epsilon ^{\beta _1,\dots , \beta _{n-k}, \alpha _1, \dots , \alpha _k}T_{\alpha _1, \dots , \alpha _k}\), where \(\epsilon ^{\beta _1,\dots , \beta _{n}}\) is the volume n-form of \(V_n\) related to g in controvariant form.

  36. The special case was analysed by Mc Vittie in an earlier note and was that of “an electrostatic field uniform in direction and nearly constant but with a slight exponential change of strength as we go along the field.” (McVittie 1929a, p. 366)

  37. He declared at the conclusion of his conference: “Le presunzioni degli uomini di genio sono quasi sempre feconde. È quindi ben probabile che l’Einstein riuscirà a realizzare la coordinazione fra sistema differenziale e reticolo in modo veramente intimo e luminoso. Io vi ho esposto unicamente ciò che il buon senso suggerisce a chi, non guidato da specifiche intuizioni, si proponga di costruirsi col tecnicismo corrente un qualche modello concreto del reticolo einsteniano”. (Levi-Civita 1929d, pp. 75–76)

  38. In particular, as also stated in the legend of Fock and Iwanenko, we have that: \(h_{\nu i}= \lambda _{i \vert \nu }\).

  39. In 1929 Weyl and Fock (initially in collaboration with Iwanenko) independently from each other introduced a local spinor structure on Lorentz manifolds in order to establish a general relativistic theory of the Dirac equation. See Scholz (2005).

  40. On Wataghin’s role in the foundation of the University of S\(\tilde{\textrm{a }}\)o Paulo see Tavares et al. (2020).

  41. Letter contained in Fondo Levi-Civita, Accademia Nazionale dei Lincei, Rome. We report the original Italian: “Ho letto questa mattina con sommo interesse la Preg.ma Nota Sua sulla “Nature” del 4 corr. Non saprei esprimerLe tutta la mia ammirazione per l’Opera Sua. L’importanza del problema, a cui Einstein ha dedicato tanti anni di studi, e al quale tanti menti eccelse hanno pensato, trova, a parer mio, una corrispondenza perfetta nella semplicità e bellezza della soluzione da Lei proposta. Per quanto dall’esposizione pubblicata sulla Nature io mi sia fatto solo una idea generale della via da Lei seguita nel fondare i principi della nuova relatività (direi ‘relatività universale’), il Suo metodo mi sembra più convincente di quello proposto da Einstein. Direi anzi di essere convinto, che la generalità e la semplicità del metodo sembra tale da garantire, che ci si trova su una strada giusta (strada che apre anche una larga possibilità di nuovi sviluppi).”

  42. Einstein appreciated Palatini’s method. On Levi-Civita’s influence on Palatini’s contribution to general theory of relativity see Cattani (1993) and Ferraris and Francaviglia (1982).

  43. All the letters by Palatini to Levi-Civita are in Fondo Levi-Civita, Accademia Nazionale dei Lincei, Rome.

  44. The letter is contained in Fondo Levi-Civita, Accademia Nazionale dei Lincei, Rome. The original Italian is: “Sento dal Prof. Vitali che anch’Ella ha notato, come Einstein, nella sua ultima ricerca per una teoria unitaria dei fenomeni gravitazionali ed elettromagnetici, si sia valso di un parallelismo assoluto che già dal 1924 si era presentato al prof. Vitali. Anche io avevo visto le due note di Einstein sui “Sitzungsberichte” e la successiva di Weitzenböck ove si dà anche un indice bibliografico in cui è compresa la nota del Vitali. Stavo appunto preparando una nota sull’argomento, che vorrei mandarLe, possibilmente entro la prossima settimana, con preghiera di curarne la presentazione ai Lincei, pei Rendiconti, s’intende ove Ella creda che ne valga la pena.”

  45. In 1927, Bortolotti had communicated to the same Academy the memoir “Parallelismo assoluto nelle varietà a connessione affine, e nuove vedute sulla relatività” (Absolute parallelism in affine-connected manifolds, and new views on relativity) (Bortolotti 1927a).

  46. We report the passage of Levi-Civita’s letter to Vitali published in Vitali’s Opere: “Ho ricevuto poco fa le note di Einstein (di cui hanno parlato perfino i giornali politici) in cui egli imposta la nuova sintesi che abbraccia in un unico sistema gravitazione ed elettromagnetismo. Mentre per la sola gravitazione il substrato era costituito da una \(V_{4}\) riemanniana (indefinita), il nuovo sistema implica, oltre a una tale \(V_{4}\), una quaterna di congruenze ortogonali in essa contenuta. Come l’introduzione geometrico-analitica, essenziale al suo scopo, l’Einstein considera il tuo parallelismo assoluto rispetto alla quaterna e la tua derivazione covariante. Ma non ti cita (del resto non fa alcuna citazione), certo perché ignorava i tuoi lavori. Dovresti mandarglieli (Haberlandstr. 5 – Berlin W. 30) con qualche riga esplicativa (in italiano, che Einstein capisce perfettamente); altrimenti l’invio rimarrebbe con tutta probabilità inosservato.” (Vitali 1984, p. 502) On the history of Vitali-Weitzenböck parallelism and the various contributions of Vitali, Enea Bortolotti and Bompiani see the article (Cogliati 2022).

  47. See the long work published by Weitzenböck in volume 3 of the Enkyklopädie der Mathematischen Wissenschaften (Weitzenböck 1923a) and his book Invariantentheorie published in 1923 (Weitzenböck 1923b).

  48. The exchange between Vitali and Einstein is published in Linguerri and Simili (2008, pp. 164–165); also published in Kormos-Buchwald et al. (2021), Doc. 407, Abs 896.

  49. Letter contained in Fondo Levi-Civita, Accademia Nazionale dei Lincei, Rome. The original Italian is: “Abbiamo già, così, scavato teorie che si riconnettono alle recenti vedute di Einstein, e che presentano delle divergenze sostanziali l’una dall’altra. Mi sembra anche poter decidere quale si avvicini meglio a una possible interpretazione dell’Universo fisico!”

  50. Pia Nalli’s letters to Levi-Civita are contained in Fondo Levi-Civita, ANL and published in Nastasi and Tazzioli (1999, pp. 381–409).

  51. See Straneo (1931a, 1931b, 1931c), 1932. On Straneo’s research and more generally on the works of Italian scholars on the General Theory of Relativity see Caparrini (1998).

  52. The letter from Straneo to Einstein is published in Linguerri and Simili (2008, pp. 166–171); see in particular the footnotes by Silvio Bergia and Luigi Fabbri.

  53. On Infeld and unified field theories see (Goenner 2004), in particular pp. 62–64.

  54. Mira Fernandes’s letters to Levi-Civita are contained in Fondo Levi-Civita, ANL. On the epistolary relationship between Levi-Civita and Mira Fernandes, particularly with regard to differential geometry, see Tazzioli (2010).

  55. See the letter by Mira Fernandes to Levi-Civita dated 1 June 1929.

  56. On Mira Fernandes’s contribution to unified field theories, see the article (Lemos 2010).

  57. Letter by Pauli to Weyl dated 26 August 1929. See Goenner (2005, p. 325.)

  58. The letter is dated 29 September 1929; see Goenner (2005, p. 325).

  59. For more details see Sauer (2006, section 6.4.)

  60. See Guerra and Robotti (2018), especially Chapter 3.

  61. This letter is cited and translated into English in Goenner (2004), chapter 7. On p. 241 of his paper, Levi-Civita indeed mentioned various papers published for instance by Iwanenko, Schouten, Struik, Wiener, Veblen and many others.

  62. On the influence of Beltrami’s ideas on Ricci Curbastro’s work on absolute differential calculus and in particular the concept of the covariant derivative see Dell’Aglio (1996). On Beltrami’s contributions to differential geometry and, more generally, on their connection to mathematical physics see Tazzioli (2000).

  63. The letter is dated 3 February 1930 and contained in Fondo Levi-Civita, ANL.

  64. See for instance (Levi-Civita 1933b).

  65. Yuri Borisovich Rumer (1901–1985) was a Soviet theoretical physicist who mostly contributed to quantum mechanics. At that time he was assistant of Born.

  66. In valuable private communications, Gasperini pointed out that the Ricci coefficients, and the corresponding Levi-Civita connection, should be used to write the equation for a spinor field minimally coupled to the geometry of a curved space-time, to discuss the possible physical effects of gravity on spinor interactions (see the Chapter 13 of Gasperini 2013). Unfortunately, in modern literature this general (and correct) approach is often ignored, starting from a Dirac equation in which the curved geometry is coupled only to the axial part of the spinor current, neglecting the possible vector contribution that is coupled to the trace of the Ricci coefficients (see (13.39) of Gasperini 2013).

  67. Here we use the semicolon for the covariant derivative, just to distinguish from the vertical bar used by Levi-Civita to separate name and indices, as in \(\lambda _{i|\mu }\).

  68. Levi-Civita suggested: \(v\varpropto \sqrt{hc}\), where h is the Planck’s constant and c is the light speed in vacuum.

References

  • Aldrovandi, R., and J.G. Pereira. 2013. Teleparallel Gravity. An Introduction. Berlin: Springer.

    Google Scholar 

  • BeltramiI, E. 1872. Di un sistema di formole per lo studio delle linee e delle superficie ortogonali. Rendiconti del R. Istituto lombardo di scienze e lettere s. 7 (5): 474–484.

    Google Scholar 

  • Bortolotti, E. 1926/27. Parallelismi assoluti nelle \(V_{n}\) riemanniane. Atti Istituto Veneto 86: 455–465.

  • Bortolotti, E. 1927a. Parallelismo assoluto nelle varietà a connessione affine, e nuove vedute sulla relatività. Memorie della Reale Accademia delle Scienze dell’Istituto di Bologna s 8 (7): 11–20.

  • Bortolotti, E. 1927b. Reti di Cebiceff e sistemi coniugati nelle \(V_{n}\) riemanniane. Rendiconti della Reale Accademia dei Lincei 5: 741–747.

  • Bortolotti, E. 1929a. Parallelismo assoluto nelle varietà a connessione: basi geometriche di una recente teoria di Einstein. Memorie dell’Accademia delle Scienze dell’Istituto di Bologna, (8) 6: 45–58.

  • Bortolotti, E. 1929b. Stelle di congruenze e parallelismo assoluto: basi geometriche di una recente teoria di Einstein. Rendiconti della R. Accademia dei Lincei 9: 530–538.

  • Bru, B. 1994. Dubourdieu, Jules (1903–1986). Professeur de Théorie mathématique des assurances (1941–1970). In Les professeurs du Conservatoire national d’arts et métiers. Dictionnaire biographique 1794–1955. Tome 1: A - K, 441–450. Paris: Institut national de recherche pédagogique.

  • Caparrini, S. 1998. La relatività, in [DiSieno et al. 1998], 453–483.

  • Capozziello, S., V. De Falco, and C. Ferrara. 2022. Comparing Equivalent Gravities: Common Features and Differences. The European Physical Journal C 82: 865.

    Google Scholar 

  • Carpanese, A. 1919. Parallelismo e curvature in una varietà qualunque. Annali di Matematica pura ed applicata 28: 147–168.

    Google Scholar 

  • Cartan, E. 1922. Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion. Comptes rendus hebdomadaires de l’Académie des Sciences de Paris 174: 593–595.

    Google Scholar 

  • Cartan, E. 1932. Le parallélisme absolu et la théorie unitaire du champ. Paris: Hermann.

    Google Scholar 

  • Cattani, C. 1993. Levi-Civita’s influence on Palatini’s contribution to general relativity, in [Earman et al. 1993], 206–222.

  • Cogliati, A. 2022. Vitali’s generalized absolute differential calculus. Archive for History of Exact Sciences 76: 15–43.

    MathSciNet  Google Scholar 

  • Corbellini, G. 1923. Sopra i sistemi di coordinate di una varietà qualunque. Rendiconti della R. Accademia dei Lincei s. 5 (32): 112–114.

    Google Scholar 

  • Debever, R. 1979. Elie Cartan and Albert Einstein: Letters on Absolute Parallelism, 1929–1932. Princeton: Princeton University Press.

    Google Scholar 

  • De Felice, F., and C.J.S. Clarke. 1990. Relativity on Curved Manifolds. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press.

    Google Scholar 

  • Dei, C. 1923. Sulle relazioni differenziali che legano i coefficienti di rotazione del Ricci. Rendiconti della R. Accademia dei Lincei s. 5 (32): 474–478.

    Google Scholar 

  • Dell’Aglio, L. 1996. On the Genesis of the Concept of Covariant Differentiation. Revue d’histoire des mathématiques 2: 215–264.

    MathSciNet  Google Scholar 

  • De Mira Fernandes, A. 1931. Proprietà di alcune connessioni lineari. Rendiconti della R. Accademia dei Lincei s. 6 (13): 179–183.

    Google Scholar 

  • De Mira Fernandes, A. 1932. Sulla teoria unitaria dello spazio fisico. Rendiconti della R. Accademia dei Lincei s. 6 (5): 797–804.

    Google Scholar 

  • De Mira Fernandes, A. 1933. Sulla teoria unitaria dello spazio fisico II. Rendiconti della R. Accademia dei Lincei s. 6 (17): 227–230.

    Google Scholar 

  • Dienes, P. 1933. Sur le déplacement d’un \(n\)-uple et sur une interprétation nouvelle des coefficients de rotation de Ricci. Rendiconti della Reale Accademia dei Lincei s. 6 (17): 119–122.

    Google Scholar 

  • Di Sieno, S., A. Guerraggio, and P. Nastasi, eds. 1998. La Matematica Italiana dopo l’Unità. Gli anni tra le due guerre mondiali. Milano: Marcos y Marcos.

    Google Scholar 

  • Dubourdieu, J. 1927. Sur les congruences des courbes. Rendiconti della Reale Accademia dei Lincei s. 6 (5): 265–271.

    Google Scholar 

  • Durnová, H., J. Kotůlek, and V. Žádník. 2017. Václav Hlavatý (1894–1969). Cesta k jednotě. Brno: Masarykova univerzita.

    Google Scholar 

  • Durnová, H., and T. Sauer. 2019. Václav Hlavatý on intuition in Riemannian space. Historia Mathematica 49: 60–79.

    MathSciNet  Google Scholar 

  • Earman, J., M. Janssen, and J.D. Norton. 1993. The Attraction of Gravitation: New Studies in the History of General Relativity. Einstein Studies, vol. V. Basel: Birkhäuser.

    Google Scholar 

  • Einstein, A. 1923. Bietet die Feldtheorie Möglichkeiten fur die Lösung des Quantenproblems. Sitzungsberichte K. Preussische Akademie Wiss. Berlin 1923: 359–364.

    Google Scholar 

  • Einstein, A. 1928. Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus. Sitzungsberichte K. Preussische Akademie Wiss. Berlin 1928: 217–221.

    Google Scholar 

  • Einstein, A. 1929. Zur einheitlichen Feldtheorie. Sitzungsberichte K. Preussische Akademie Wiss. Berlin 1929: 2–7.

    Google Scholar 

  • Einstein, A. 1930a. Auf die Riemann-Metrik und den Fern-Parallelismus gegr"undet einheitliche Feldtheorie. Mathematische Annalen 102: 685–697.

  • Einstein, A. 1930b. Théorie unitaire du champ physique. Annales de l’Institut Henri Poincaré 1: 1–24.

  • Einstein, A. 1930c. Die Kompatibilität der Feldgleichungen in der einheitlichen Feldtheorie. Sitzungsberichte K. Preussische Akademie Wiss. Berlin 1930: 18–23.

  • Eisenhart, L.P. 1926. Riemannian Geometry. Princeton: Princeton University Press.

    Google Scholar 

  • Ferraris, M., and M. Francaviglia. 1982. Variational Formulation of General Relativity from 1914 to 1925 “Palatini’s Method’’ Discovered by Einstein in 1925. General Relativity and Gravitation 14: 243–253.

    MathSciNet  Google Scholar 

  • Flament, D., J. Kouneiher, Ph. Nabonnand, and J.J. Szczeciniarz, eds. 2005. Géométrie au XXe siècle. Histoire et horizons. Paris: Hermann.

    Google Scholar 

  • Fock, V. 1929. Geometrisierung der Diracschen Theorie des Elektrons. Zeitschrift für Physik 57: 261–277.

    Google Scholar 

  • Fock, V., and D. Iwanenko. 1929. Über eine mögliche geometrische Deutung der relativistischen Quantentheorie. Zeitschrift für Physik 54: 798–802.

    Google Scholar 

  • Gasperini, M. 2013. Theory of Gravitational Interactions. Berlin: Springer.

    Google Scholar 

  • Goenner, F.M. 2004. On the history of unified field theory. Living Reviews in Relativity 7: 5–129.

    Google Scholar 

  • Goenner, F.M. 2005. Unified field theory: Early history and interplay between mathematics and physics, in [Kox and Eisenstaedt 2005], 303–325.

  • Goldstein, C., and J. Ritter. 2003. The varieties of unity: Sounding unified theories 1920–1930, 2003, in [Renn et al. 2003], 93–149.

  • Goodstein, J.R. 2018. Einstein’s Italian Mathematicians: Ricci, Levi-Civita, and the Birth of General Relativity. Providence: AMS.

    Google Scholar 

  • Graustein, W.C. 1924. The Scientific Work of Joseph Lipka. Bulletin of the American Mathematical Society 30: 352–356.

    MathSciNet  Google Scholar 

  • Guerra, F., and N. Robotti. 2018. The Lost Notebook of Enrico Fermi. The True Story of the Discovery of Neutron-Induced Radioactivity. Berlin: Springer.

    Google Scholar 

  • Hawking, S.W., and G.F.R. Ellis. 1973. The Large Scale Structure of Space–Time. Cambridge Monographs on Mathematical Physics, vol. 1. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hermann, R., ed. 1975. Ricci and Levi-Civita’s Tensor Analysis Paper. Brookline: Math Sci Press.

    Google Scholar 

  • Hlavatý, V. 1928. Sur les coefficients de Ricci. Comptes rendus hebdomadaires des séances de l’Académie des sciences de Paris 186: 1691–1694.

    Google Scholar 

  • Hodge, W.V.D. 1942. Tullio Levi-Civita, 1873–1941. Notices of Fellows of the Royal Society 4: 151–165.

    MathSciNet  Google Scholar 

  • Hopf, H. 1927. Vektorfelder in \(n\)-dimensionalen Mannigfaltigkeiten. Mathematische Annalen 96: 225–260.

    MathSciNet  Google Scholar 

  • Infeld, L. 1928. Bemerkungen zu der Arbeit von Herrn K. Hattori. Zeitschrift für Physik 29: 810–811.

    Google Scholar 

  • Infeld, L. 1932. Remarques sur le problème de la théorie unitaire des champs. Rendiconti della R. Accademia dei Lincei s. 6 (15): 157–160.

    Google Scholar 

  • Iosifescu, M. 1986. Obituary Notice. Octav Onicescu, 1892–1983. International Statistical Review 54: 97–108.

    MathSciNet  Google Scholar 

  • Kopff, A. 1923. I fondamenti della relatività einsteniana. Milano: Hoepli.

    Google Scholar 

  • Kormos-Buchwald, D., et al. 2021. The Collected Papers of Albert Einstein, vol. 16. Princeton: Princeton University Press.

    Google Scholar 

  • Kox, J., and J. Eisenstaedt, eds. 2005. The Universe of General Relativity. Basel: Birkhäuser.

    Google Scholar 

  • Landau, L.D., and E.M. Lifschitz. 1962. The Classical Theory of Fields. Oxford: Addison-Wesley Publishing Co.

    Google Scholar 

  • Lemos, J. 2010. Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry). In Boletim da Sociedade Portuguesa de Matemática: (Número Especial-Aureliano Mira Fernandes), ed. L. Saraiva and J.T. Pinto, 147–178. Lisboa: SPM.

    Google Scholar 

  • Levi-Civita, T. 1917. Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana, in [Levi-Civita 1954–1973], IV, 1–39.

  • Levi-Civita, T. 1919. Come potrebbe un conservatore giungere alla soglia della nuova meccanica, in [Levi-Civita 1954–1973], IV, 197–216.

  • Levi-Civita, T. 1925. Lezioni sul calcolo differenziale assoluto. Roma: Stock.

    Google Scholar 

  • Levi-Civita, T. 1926. The Absolute Differential Calculus (Calculus of Tensors). Glasgow: Blackie & Son.

    Google Scholar 

  • Levi-Civita, T. 1928. Der absolute Differentialkalkül und seine Anwendungen in Geometrie und Physik. Berlin: Springer.

    Google Scholar 

  • Levi-Civita, T. 1929a. A Proposed Modification of Einstein’s Field-Theory. Nature 1929: 678–679.

  • Levi-Civita, T. 1929b. Vereinfachte Herstellung der Einsteinschen einheitlichen Feldgleichung, in [Levi-Civita 1954–1973], V, 1–22.

  • Levi-Civita, T. 1929c. A Simplified Presentation of Einstein’s Unified Field Theory. London: Blackie & Son.

  • Levi-Civita, T. 1929d. Sopra la nuova rappresentazione unitaria dei fenomeni fisici proposta dall’Einstein. Rendiconti del Seminario Matematico della Facoltà di Scienze della R. Università di Roma, 1928–29 s. 2(6): 75–76.

  • Levi-Civita, T. 1933a. Diracsche une Schrödingersche Gleichungen, in [Levi-Civita 1954–1973], V, 315–327.

  • Levi-Civita, T. 1933b. Some mathematical aspects of the new mechanics, in [Levi-Civita 1954–1973], V, 335–363.

  • Levi-Civita, T. 1954–1973. Opere Matematiche, 6 vols. Bologna: Zanichelli.

  • Levi-Civita, T., and G. Ricci Curbastro. 1900. Méthodes de calcul différentiel absolu et leurs applications, in [Levi-Civita 1954–1973], I, 479–559.

  • Levy, H. 1925a. Normal Congruences of Curves in Riemann Space. Bulletin of the American Mathematical Society 31: 39–42.

  • Levy, H. 1925b. Ricci’s Coefficients of Rotation. Bulletin of the American Mathematical Society 31: 142–145.

  • Levy, H. 1926. Congruences of Curves in the Geometry of Paths. Rendiconti del Circolo Matematico di Palermo 51: 304–311.

    Google Scholar 

  • Linguerri, S., and R. Simili. 2008. Einstein parla italiano. Itinerari e polemiche. Bologna: Pendragon.

    Google Scholar 

  • Lipka, J. 1924. On Ricci’s Coefficients of Rotation. Journal of Mathematics and Physics of MIT 3: 7–23.

    Google Scholar 

  • McVittie, G.C. 1929a. On Einstein’s Unified Field Theory. Proceeding of the Royal Society of London 124: 366–374.

  • McVittie, G.C. 1929b. On Levi-Civita’s Modification of Einstein’s Unified Field Theory. Philosophical Magazine 8: 1033–1040.

  • Misner, C.W., K.S. Thorne, and J.A. Wheeler. 1973. Gravitation. San Francisco: W. H. Freeman and Co.

    Google Scholar 

  • Nalli, P. 1931. Trasporti rigidi e relatività. Rendiconti della R. Accademia dei Lincei s. 6 (13): 837–842.

    Google Scholar 

  • Nastasi, P., and R. Tazzioli. 1999. Calendario della corrispondenza di Tullio Levi-Civita (1873–1941) con appendici di documenti inediti, Quaderni Pristem, n. 8. Palermo: Tipografia A. C.

  • Nastasi, P., and R. Tazzioli. 2000. Aspetti scientifici e umani nella corrispondenza di Tullio Levi-Civita (1873–1941), Quaderni Pristem, n. 12. Palermo: Tipografia A. C.

  • Nastasi, P., and R. Tazzioli. 2005. Toward a Scientific and Personal Biography of Tullio Levi-Civita (1873–1941). Historia Mathematica 32: 203–236.

    MathSciNet  Google Scholar 

  • Onicescu, O. 1920. Sulle varietà che ammettono una variazione infinitesima. Rendiconti della R. Accademia dei Lincei s. 5 (32): 112–114.

    Google Scholar 

  • Palatini, A. 1919. Deduzione invariantiva delle equazioni gravitazionali dal principio di Hamilton. Rendiconti del Circolo Matematico di Palermo 43: 203–212.

    Google Scholar 

  • Palatini, A. 1929. Intorno alla nuova teoria di Einstein. Rendiconti della R. Accademia dei Lincei s. 6 (10): 633–639.

    Google Scholar 

  • Parshall, K. 2004. Defining a Mathematical Research School. The Case of Algebra at the University of Chicago, 1892–1945. Historia Mathematica 31: 263–278.

    MathSciNet  Google Scholar 

  • Piaggio, H.T.H. 1930. Review of A Simplified Presentation of Einstein’s Unified Field Equations. The Mathematical Gazette 15: 274–275.

    Google Scholar 

  • Renn, J., L. Divarci, P. Schröter, et al. (eds.). 2003. Revisiting the Foundations of Relativistic Physics. Festschrift in Honor of John Stachel. Berlin: Springer.

    Google Scholar 

  • Ricci Curbastro, G. 1896a. Dei sistemi di congruenze ortogonali in una varietà qualunque, in [Ricci Curbastro 1956–57], II, 1–61.

  • Ricci Curbastro, G. 1896b. Lezioni sulla teoria delle superficie. Verona: Drucker.

  • Ricci Curbastro, G. 1902. Formole fondamentali nella teoria generale delle varietà e della loro curvatura, in [Ricci Curbastro 1956–57], II, 293–300.

  • Ricci Curbastro, G. 1956–57. Opere. In U.M.I. (ed.), 2 vols. Roma: Cremonese.

  • Sauer, T. 2006. Field Equations in Teleparallel Space-Time: Einstein’s Fernparallelismus Approach Towards Unified Field Theory. Historia Mathematica 33: 399–439.

    MathSciNet  Google Scholar 

  • Sauer, T. 2014. Einstein’s Unified Field Theory Program, in [Janssen and Lehner 2014], 281–305.

  • Scholz, E. 1995. Hermann Weyl’s Purely Infinitesimal Geometry. In Proceedings of the International Congress of Mathematicians, Zurich, 1994, 1592–1603, Basel: Birkhäuser.

  • Scholz, E. 2005. Local spinor structures in V. Fock’s and H. Weyl’s work on the Dirac equation (1929), in [Flament et al. 2005], 284–301.

  • Slebodzinski, W. 1927. Sur une classe d’espace riemanniens à trois dimensions. Annales de la Société polonaise de mathématiques 4: 54–82.

    Google Scholar 

  • Stachel, J. 1993. The Other Einstein: Einstein Contra Field Theory. Science in Context 6: 275–290.

    MathSciNet  Google Scholar 

  • Straneo, P. 1924. Teoria della relatività. Saggio di una esposizione secondo il senso fisico. Roma: G. Bardi.

    Google Scholar 

  • Straneo, P. 1931a. Intorno alla teoria unitaria della gravitazione e dell’elettricità. I. Base fisicogeometrica per una conseguente deduzione delle equazioni di campo. Rendiconti della R. Accademia dei Lincei s. 6(13): 364–370.

  • Straneo, P. 1931b. Intorno alla teoria unitaria della gravitazione e dell’elettricità. II. Posizione e prima discussione delle equazioni di campo. Rendiconti della R. Accademia dei Lincei s. 6(13): 695–701.

  • Straneo, P. 1931c. Intorno alla teoria unitaria della gravitazione e dell’elettricità. III. Ancora qualche conseguenza delle equazioni unitarie. Rendiconti della R. Accademia dei Lincei s. 6(13): 770–774.

  • Straneo, P. 1932. Intorno alla teoria unitaria della gravitazione e dell’elettricità. IV. Discussione e perfezionamento della teoria precedente. Rendiconti della R. Accademia dei Lincei s. 6(15): 77–82.

  • Tavares, H.D., A. Bagdonas, and A.A.P. Videira. 2020. Transnationalism as scientific identity: Gleb Wataghin and Brazilian physics, 1934–1949. Historical Studies in the Natural Sciences 50: 248–301.

    Google Scholar 

  • Tazzioli, R. 2000. Beltrami e I matematici relativisti. La meccanica in spazi curvi nella seconda metà dell’Ottocento, Quaderni dell’Unione Matematica Italiana, vol. 47. Bologna: Pitagora.

    Google Scholar 

  • Tazzioli, R. 2010. Mira Fernandes and Levi-Civita’s School. In Boletim da Sociedade Portuguesa de Matemática (Número Especial - Aureliano Mira Fernandes), ed. L. Saraiva and J.T. Pinto, 67–87. Lisboa: SPM.

    Google Scholar 

  • Trautman, A. 2006. Einstein–Cartan Theory. In Encyclopedia of Mathematical Physics, vol. 2, ed. J.-P. Francoise, G.L. Naber, and S.T. Tsou, 189–195. Oxford: Elsevier.

    Google Scholar 

  • Vitali, G. 1923. Una derivazione covariante formata coll’ausilio di \(n\) sistemi covarianti del \(1^{o}\) ordine. Atti della Società Linguistica di Scienze e Lettere 2: 248–253.

    Google Scholar 

  • Vitali, G. 1925. Intorno a una derivazione nel calcolo assoluto. Atti della Società Linguistica di Scienze e Lettere 4: 287–291.

    Google Scholar 

  • Vitali, G. 1984. Opere sull’analisi reale e complessa. In Carteggio, ed. Unione Matematica Italiana and Consiglio Nazionale delle Ricerche. Rome: Edizioni Cremonese.

    Google Scholar 

  • Vizgin, V.P. 1994. Unified Field Theories in the First Third of the 20th Century. Reprint of the 1994 edition, Basel: Birkhäuser/Springer.

  • von Laue, M. 1921. Dir Relativitätstheorie, II. Brunswick: Vieweg.

    Google Scholar 

  • Wataghin, G. 1929a. Sopra un’applicazione della relatività alla meccanica quantistica. Rendiconti della R. Accademia dei Lincei s. 6(10): 423–429.

  • Wataghin, G. 1929b. Sull’applicazione della relatività alla meccanica ondulatoria. Atti della Società Italiana per il Progresso delle Scienze, XVIII Riunione, vol. II, 5 pp.

  • Wataghin, G. 1929c. Relatività e meccanica ondulatoria. Atti della Società Italiana per il Progresso delle Scienze, XVIII Riunione, vol. II, 3 pp.

  • Weyl, H. 1921. Raum, Zeit, Materie. Berlin: Springer (first edition 1918). English translation, Dover, 1952.

  • Weyl, H. 1931. Geometrie und Physik. Naturwissenschaften 19: 49–58.

    Google Scholar 

  • Weitzenböck, R. 1923a. Neuere Arbeiten der algebraischen Invariantentheorie. Differentialinvarianten. In Enzyklopädie der Mathematischen Wissenschaften, 3–3 (1902–1927), 1–71, Leipzig, Teubner.

  • Weitzenböck, R. 1923b. Invariantentheorie. Groningen: P. Nordhoff.

  • Weitzenböck, R. 1928. Differentialinvarianten in der Einsteinschen Theorie der Fernparallelismus. Sitzungsberichte K. Preussische Akademie Wiss. Berlin 1928: 466–474.

    Google Scholar 

  • Wiener, N., and M.S. Vallarta. 1929. Unified field theory of electricity and gravitation. Nature 1929: 317.

    Google Scholar 

Download references

Acknowledgements

We warmly thank Giulio Peruzzi for his invaluable suggestions and stimulating questions, which significantly contributed to the improvement of our work. We also wish to express our appreciation to Fernando De Felice and Maurizio Gasperini for their insightful discussions and recommendations. Special recognition is due to the Ceccherini-Silberstein family for their generosity in providing access to the Levi-Civita archives within their possession, a vital resource for our research. Lastly, we extend our heartfelt thanks to Marco Favretti for his meticulous final proofreading of the manuscript, ensuring its accuracy and clarity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossana Tazzioli.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Additional information

Communicated by Tilman Sauer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rossana Tazzioli’s research was partially supported by the Labex CEMPI (ANR-11-LABX-0007-01)

Appendices

Appendix A The vector-valued 1-form \(-\Delta ^{\ \nu }_{\mu \sigma } A^{\mu }\textrm{d}x^\sigma \) is closed

$$\begin{aligned}{} & {} \Theta ^{(\nu )}_{\sigma }\textrm{d}x^\sigma :=- \Delta _{\mu \sigma }^{\nu } A^{\mu } \textrm{d}x^{\sigma } \qquad \text {where}\qquad \Delta _{\mu \sigma }^{\nu } = h_{a}^{\nu } \frac{\partial h_{\mu a}}{\partial x^{\sigma }} \\{} & {} \begin{array}{rll} \Theta ^{(\nu )}_{\sigma ,\beta }&{}=(-\Delta ^{\ \nu }_{\mu \sigma } A^{\mu })_{,\beta }= \left( -h^\nu _a \, h_{\mu a,\sigma }\, A^\mu \right) _{,\beta }&{}\ \\ \\ \ {} &{}= -h^\nu _{a,\beta } \, h_{\mu a,\sigma }\, A^\mu -h^\nu _a \, h_{\mu a,\sigma \beta }\, A^\mu -h^\nu _a \, h_{\mu a,\sigma }\, A^\mu _{,\beta } &{}\ \\ \end{array} \end{aligned}$$

we continue by elaborating just the third term in the above rhs:

$$\begin{aligned}{} & {} -h^\nu _a \, h_{\mu a,\sigma }\, A^\mu _{,\beta } = -h^\nu _a \, h_{\mu a,\sigma }\, (-\Delta ^\mu _{\rho \beta }A^\rho ) = -h^\nu _a \, h_{\mu a,\sigma }\, (-h^\mu _b \, h_{\rho b, \beta }A^\rho ) \\{} & {} \quad = h^\nu _a \, h_{\mu a,\sigma }\, h^\mu _b \, h_{\rho b, \beta }A^\rho = - h^\nu _{a,\sigma } \, h_{\mu a}\, h^\mu _b \, h_{\rho b, \beta }A^\rho = - h^\nu _{a,\sigma } \, h_{\rho a, \beta }A^\rho \\ {}{} & {} \quad = - h^\nu _{a,\sigma } \, h_{\mu a, \beta }A^\mu \end{aligned}$$

Finally,

$$\begin{aligned} \Theta ^{(\nu )}_{\sigma ,\beta }=-h^\nu _{a,\beta } \, h_{\mu a,\sigma }\, A^\mu -h^\nu _a \, h_{\mu a,\sigma \beta }\, A^\mu - h^\nu _{a,\sigma } \, h_{\mu a, \beta }A^\mu = \Theta ^{(\nu )}_{\beta , \sigma } \qquad \square \ \end{aligned}$$

Hence:

$$\begin{aligned} \oint \textrm{d}A^\nu =\oint \Theta ^{(\nu )}_{\beta }\textrm{d}x^\beta =0, \end{aligned}$$

the connection \(\Delta ^{\ \nu }_{\mu \sigma }\) is curvature-free.

Appendix B Levi-Civita proposal and comparison with the modern expression of Maxwell’s equations

The final stepFootnote 67 performed by Levi-Civita is the definition of the skew-symmetrical object \(\xi _{ik}\) (formula (12) in Levi-Civita 1929c):

$$\begin{aligned} \xi _{ik}:= \sum _{\ell =0}^{n-1} \frac{\textrm{d}\gamma _{ik\ell }}{\textrm{d}s_\ell }\qquad \qquad \text {where}\ \ \frac{\textrm{d}}{\textrm{d}s_\ell }{\Phi \dots }= {\Phi \dots }_{;\mu }\,\lambda _{\ell |}^{\ \ \mu } \end{aligned}$$
(B1)

if one transforms it into

$$\begin{aligned} \xi _{\mu \nu }:=\xi ^{ik}\lambda _{i|\mu }\lambda _{k|\nu } \end{aligned}$$
(B2)

one discovers that

$$\begin{aligned} \xi ^{\mu \nu }_{\ \;\mu \nu }=0. \end{aligned}$$
(B3)

Then realizing what is now called Hodge transformation of \(\xi _{\mu \nu ;\sigma }\),

$$\begin{aligned} p_{\mu }:=\epsilon ^{\mu \nu \rho \sigma }\,\xi _{\nu \rho ;\sigma } \end{aligned}$$
(B4)

one gains that

$$\begin{aligned} p^{\mu }_{\;\mu }=0 \end{aligned}$$
(B5)

The Faraday tensor (2-form) is recognizedFootnote 68:

$$\begin{aligned} F_{\mu \nu }=v\, \xi _{\mu \nu },\quad v: \text {constant} \end{aligned}$$
(B6)

Formulae (B3) and (B5) represent Maxwell’s equations in vacuum. Today they are written respectively, using the exterior differential d, as

$$\begin{aligned} \textrm{d}F=0,\qquad \textrm{d}^*F=0. \end{aligned}$$
(B7)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardin, F., Tazzioli, R. Levi-Civita simplifies Einstein. The Ricci rotation coefficients and unified field theories. Arch. Hist. Exact Sci. 78, 87–126 (2024). https://doi.org/10.1007/s00407-023-00322-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-023-00322-0

Navigation