Skip to main content
Log in

On Kepler’s system of conics in Astronomiae pars optica

  • Published:
Archive for History of Exact Sciences Aims and scope Submit manuscript

Abstract

This is an attempt to explain Kepler’s invention of the first “non-cone-based” system of conics, and to put it into a historical perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Erazmus Ciolek Witelo (c.1230, after 1275), was author of Perspectiva, printed for the first time only in 1535, a treatise on optics largely based on the Latin version of Kitab-al-manazir (The book of optics) by the Persian Ibn al-Haytham (Alhazen). It is to Witelo’s Perspectiva to which Kepler was referring in the title of his work. Likely Kepler used Risner’s Opticae thesaurus (1572) containing the works of Witelo and Ibn al-Haytham.

  2. See for instance the detailed (Buchdhal 1972), and the more recent (Knobloch 2000).

  3. A similar figure also appeared in Supplementum ad Archimedem, de sectonibus coni, a section of Kepler’s Nova stereometria (Kepler 1615), where he stated again that the centre and the second focus of the parabola are at infinity.

  4. See also the notes on this topic that Taylor inserted in his (1881) and (1883).

  5. See footnote n. 16 in Sect. 3.

  6. Also (Risner 1572, pp. 398–402).

  7. Kepler in Astronomia nova (1609, p. 189) attested to have read this work.

  8. This term, which means “hearth”, “fire-place” and “burning-point”, certainly arise from investigations on burning-mirrors. In the later Astronomia nova, Kepler called each of such points puncto eccentrico.

  9. See also (Davis 1975, p. 679).

  10. Here Kepler wrote of length “AC duplicata” (p. 96, line 1), i.e. 2AC, which is inaccurate. This was already pointed out by Taylor (1900, p. 202).

  11. The Harmonices mundi was planned since 1599, but not completed and published until 1619. At p. 39 of this work, Kepler explicitly referred to the wrong construction of the heptagon offered by Dürer in (1525, fig. 9), and so that he had read his treatise. We thank Aldo Brigaglia for having brought this to our attention.

  12. Kepler studied Euclid’s Elements and the works of Archimedes, Apollonius and Pappus translated into Latin by Federico Commandino (Commandino 1558, 1566, 1588). Kepler quoted Commandino’s works in Astronomia nova, p. 286, see also (Cronwell 1997, p. 140). In particular he knew the definition of conics through the focus-directrix property, as in Pappus’ Collectiones, book 7, prop. 138. The constant e is the eccentricity of the conic.

  13. Francesco Maurolico in Photismi de lumine et umbra, completed in 1521, proved that any conic is the perspective image of a circle (1611, theorems XII, XIII). In this work Maurolico also studied problems concerning the camera obscura. It seems that Blaise Pascal, in the lost Traité des coniques, affirmed that all conics are the perspective image of a circle, see (Taton 1962, p. 237). We also observe that Isaac Newton, in section 29 “Genesis curvarum per umbra” of his short treatise Enumeratio linearum tertii ordinis, see (1704, p.157), wrote that all conics can be seen as shadows of a circle. It is interesting to notice that Taylor (1900, p. 217), wrote that such genesis may have been suggested to Newton by some of Kepler’s problemata observatoria (Kepler 1604, pp. 201, 203).

  14. This is the system obtained when one allows \(\lambda \) to assume the value \(\infty \), or, which is the same, \(\varPhi \) is put in the projective form \(\mu (z -2) + \lambda (2x + z - 0)= 0\).

  15. In fact for \(\lambda \rightarrow -1\), the two arms (or branches) of the hyperbola become closer and closer, until they flatten onto the line \(x = 1\).

  16. We note in passing that Hofmann, see p. 336 of the reprint of his work, wrote the following equation \(y^{2}=2px-(1-e^{2})x^{2}\), where p is a fixed number and e the eccentricity. This equation does not represent a system of semi-confocal conics. For instance, for \(p = 1\) the coordinates of the foci are \((1/(1+e),0)\) and \((1/(1- e),0)\), and clearly both depend on the eccentricity. Let us remark that when \( e \rightarrow +\infty \), the limiting position of the foci is the point (0, 0); so in this system both foci coincide for the degenerate hyperbola and fall on it.

  17. See for instance (Ayoub 2003).

  18. Desargues in the Brouillon project (1639) adopted the term “foyer”, used for the first time by Kepler. Taylor (1900, p. 205) wrote: “Desargues must have learned directly or indirectly from the work in which Kepler propounded his new theory of these points, first called by him Foci (foyers)”.

References

  • Ayoub, A.B. 2003. The eccentricity of a conic section. The College Mathematics Journal 34(2): 116–121.

    Article  MathSciNet  Google Scholar 

  • Boscovich, R.J. 1757. Elementorum universae matheseos, vol. III. Venetiis, apud A. Perlini.

  • Buchdhal, G. 1972. Methodological aspects of Kepler’s theory of refraction. Studies in History and Philosophy of Science 3: 265–298.

    Article  Google Scholar 

  • Commandino, F. 1558. Archimedes opera non nulla a Federico Commandino urbinate nuper in latinum conversae et commentaries illustrata. Venetiis: apud P. Manuntium.

  • Commandino, F. 1566. Apollonii pergaei conicorum libri quattruor, una cum Pappi alexandrini lemmatibus et commentaries Eutocii ascalonitae \(\ldots \). Bononiae, A. Bennatii.

  • Commandino, F. 1588. Pappi alexandrini mathematicae collectiones a Federico Commandino urbinate in latinum conversae et commentariis illustratae. Pisauri, apud H. Concordiam.

  • Cronwell, P.R. 1997. Polyedra. Cambridge: Cambridge University Press.

    Google Scholar 

  • Davis, A.E.L. 1975. Systems of conics in Kepler’s work. Vistas in Astronomy 18: 673–685.

    Article  Google Scholar 

  • Del Monte, G. 1600. Perspectiva libri sex. Pisauri: apud H. Concordiam.

  • Desargues, G. 1639. Brouillon proiect d’une atteinte aux evenemens des rencontres du Cone avec un Plane, Paris, also in L’Oeuvre mathématique de G. Desargues, ed. R. Taton. 1951. Paris: Presses Universitaires de France.

  • Dürer, A. 1525. Underweyssung der Messung mit Zirckel und Richtsheyt. Norimbergae: J. Petreius.

  • Field, J.V. 1986. Two mathematical inventions in Kepler’s Ad Vitellionem paralipomea. Studies in History and Philosophy of Science Part A 17: 449–468.

    Article  MathSciNet  MATH  Google Scholar 

  • Field, J.V., and J.J. Gray. 1987. The geometrical work of Girard Desargues. New York: Springer.

    Book  MATH  Google Scholar 

  • Field, J.V. 1997. The invention of infinity: Mathematics and art in the Renaissance. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Hofmann, J.E. 1971. Über einige fachliche Beiträge Keplers zur Mathematik, in Internationales Kepler-symposium Weil der Stadt 1971, eds. F. Kraff Meyer and B. Sticker (1973), 1–84; we quote reprint in J.E. Hofmann (1990) Ausgewählte Schriften, ed. C.J. Scriba, vol. 2, 327–350. Hildesheim: Olms Verlag.

  • Kepler, J. 1604. Ad Vitellionem paralipomea quibus astronomiae pars optica traditur eds. C. Marnium Francofurti and H.I. Aubrii; also in Gesammelte Werke II, ed. M. Caspar. Munich 1937.

  • Kepler, J. 1609. Astronomia nova \(\ldots \) seu physica coelestium, tradita commentariis de motus stellae martis. Prague; also in Gesammelte Werke, vol. III, ed. M. Caspar. Munich 1937.

  • Kepler, J. 1615. Nova stereometria dolorium vinariorum. Lincii: J. Plancus; also in Gesammelte Werke, vol. IX, ed. Franz Hammer. Munich 1955.

  • Kepler, J. 1619. Harmonices mundi libri V. Lincii: Tampachii.

  • Kepler, J. 2000. Optics: Paralipomena to Witelo, & Optical Part of Astronomy, Complete English translation, by W. H. Donahue, of Kepler’s Ad Vitellionem paralipomea quibus astronomiae pars optica traditur, Frankfurt, 1604. Santa Fe: Green Lion Press.

  • Kline, M. 1972. Mathematical thought from ancient to modern times. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Knobloch, E. 2000. Analogy and the growth of the mathematical knowledge. In The growth of mathematical knowledge, ed. E. Grosholz, and H. Breger, 295–314. New York: Springer.

    Chapter  Google Scholar 

  • Maurolico, F. 1611. Photismi de lumine et umbra ad perspectivam, et radiorum incidentiam facientes. Neapolis: T. Longi.

  • Mersenne, M. 1636. Harmonie universelle contenant la théorie et la pratique de la musique. Paris: S. Cramoisy.

  • Newton, I. 1704. Opticks. London: Smith and Walford.

    MATH  Google Scholar 

  • Poncelet, J.-V. 1822. Traité de propriétés projectives des figures. Paris: Bachelier.

    Google Scholar 

  • Risner, F. 1572. Opticae thesaurus: Alhazeni Arabis libri septem, nunc primùm editi. Eiusdem liber De Crepusculs et Nubium Ascensionibus. Item Vitellionis Thuringopoloni libri X. Basileae: Episcopius.

  • Taton, R. 1962. L’œuvre de Pascal en géométrie projective. Revue d’Histoire des Sciences et de leur app 15: 197–262.

    MathSciNet  MATH  Google Scholar 

  • Taylor, C. 1881. An introduction to ancient and modern geometry of conics. Cambridge: Deighton Bell and Co.

    Google Scholar 

  • Taylor, C. 1883. On the history of geometrical continuity. Proceedings of the Cambridge Philosophical Society IV: 14–17.

    MATH  Google Scholar 

  • Taylor, C. 1900. The geometry of Kepler and Newton. Transaction of the Cambridge Philosophical Society VIII: 197–219.

    Google Scholar 

  • Witelo, E.C. 1535. Perspectivam. Norimbergae: J. Petreius.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Del Centina.

Additional information

Communicated by : Noel Swerdlow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Centina, A. On Kepler’s system of conics in Astronomiae pars optica . Arch. Hist. Exact Sci. 70, 567–589 (2016). https://doi.org/10.1007/s00407-016-0175-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00407-016-0175-2

Keywords

Navigation