Advertisement

Archive for History of Exact Sciences

, Volume 69, Issue 3, pp 311–326 | Cite as

Fantappiè’s “final relativity” and deformations of Lie algebras

  • N. CiccoliEmail author
Article

Abstract

The rigidity of the real semisimple Lie algebra \({\mathfrak {so}}(4,1)\) was first proved in a brief paper published by Fantappiè in 1954 (Rend. Accad. Lincei Ser. VIII 17:158–165, 1954). The purpose of this note is to provide some historical context for this work and discuss why no further developments of this result were pursued by Italian mathematicians at the time.

Keywords

Simple Group Lorentz Group Final Relativity Galilei Group Inhomogeneous Lorentz Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank Prof. M. C. Nucci for encouraging me to write these notes and Prof. D. Struppa and Prof. Michael McNeil for generously devoting their time to improve an earlier version of this manuscript.

References

  1. AA.VV. 1972. Luigi Fantappiè: scienziato e matematico, R. Scipio ed., Viterbo: AgnesottiGoogle Scholar
  2. Arcidiacono, G. 1988. L’universo di De Sitter, il gruppo di Fantappiè e la cosmologia del Big Bang. Collect. Math. 39: 55–65.MathSciNetGoogle Scholar
  3. Baez, J.C., et al. 1999. Irving Ezra Segal 1918–1998. Notices of the American Mathematical Society 6: 659–668.MathSciNetGoogle Scholar
  4. Bergia, S. 2005. Il contributo italiano alla relatività. Boll. U.M.I. Serie VIII 8: 261–287.zbMATHMathSciNetGoogle Scholar
  5. Bianchi, L. 1918. Lezioni sulla teoria dei gruppi continui finiti di trasformazioni. Pisa: Spoerri.zbMATHGoogle Scholar
  6. Brigaglia, A., and Scimone, A. 1998. Algebra e teoria dei numeri, in La Matematica italiana dopo l’unità. Milano: Marcos y Marcos.Google Scholar
  7. Cartan, E. 1914. Les groupes réels simples finis et continus. Annales Scientifiques École Normale Sup. Paris 31: 263–355.MathSciNetGoogle Scholar
  8. Cartan, E. 1929. Groupes simples clos et ouverts et géométrie riemannienne. Journ. Math. Pures et Appl. 8: 1–34.zbMATHGoogle Scholar
  9. Cogliati, A. 2014. Early history of infinite continuous groups, 1883–1898. Hist. Math. 41: 291–332.CrossRefzbMATHMathSciNetGoogle Scholar
  10. Dyson, F.J. 1972. Missed opportunities. Bulletin of the American Mathematical Society 78: 635–652.CrossRefzbMATHMathSciNetGoogle Scholar
  11. Evola, J. 1940. Gli ebrei e la matematica. Difesa della razza 3: 24–28.Google Scholar
  12. Fantappiè, L. 1973. Opere Complete, vol. 2. Rome: Unione Matematica Italiana.Google Scholar
  13. Fantappiè, L. 1949. Fantappiè, Costruzione effettiva dei prodotti funzionali relativisticamente invarianti. Ann. Di Mat. s. 4 XXIX: 43–69.Google Scholar
  14. Fantappiè, L. 1952. Caratterizzazione analitica delle grandezze della meccanica quantica. Rend. Accad. Lincei Ser. VIII 12: 285–290.zbMATHGoogle Scholar
  15. Fantappiè, L. 1954. Su una nuova teoria di relatività finale. Rend. Accad. Lincei Ser. VIII 17: 158–165.zbMATHGoogle Scholar
  16. Fantappiè, L. 1955. Deduzione autonoma dell’equazione generalizzata di Schrödinger, nella teoria di relatività finale. Rend. Accad. Lincei Ser. VIII 19: 367–373.Google Scholar
  17. Fantappiè, L. 1959. Sui fondamenti gruppali della fisica. Collect. Math. 9: 77–136.Google Scholar
  18. Fantappiè, L. 1961. I gruppi topologici. Ed. F. Succi. Indam Lectures, Roma: Docet.Google Scholar
  19. Fantappiè, L. 1993. Conferenze Scelte, Roma: Di Renzo.Google Scholar
  20. Fichera, G. 1957. La vita matematica di L. Fantappiè. Rend. Mat. XVI: 143–160.MathSciNetGoogle Scholar
  21. Gambini, G., and L. Pepe. La raccolta di Fantappiè di opuscoli nella biblioteca dell’Istituto Matematico della Università di Ferrara, preprint, Università di Ferrara.Google Scholar
  22. Gerstenhaber, M. 1964. On the deformations of rings and algebras. Annals of Mathematics 79: 59–103.CrossRefzbMATHMathSciNetGoogle Scholar
  23. Goodstein, J., and D. Babbit. 2012. A fresh look at Francesco Severi. Notices of the American Mathematical Society 9: 1064–1075.CrossRefGoogle Scholar
  24. Goze, M., and Lutz. 1981. Nonstandard Analysis: A practical guide with applications, Lecture Notes in Mathematics, vol. 881. Berlin: Springer.Google Scholar
  25. Guerraggio, A., and P. Nastasi. 2005. Matematica in camicia nera - il regime e gli scienziati. Milano: B. Mondadori.Google Scholar
  26. Hawkins, T. 2000. Emergence of the theory of Lie groups, An Essay in the History of Mathematics 1869–1926, Sources and Studies in the History of Mathematics and Physical Sciences. New York: Springer.Google Scholar
  27. Inönü, E. 1997. A historical note on group contractions. In Workshop on Quantum Groups, Deformations and Contractions. http://ysfine.com/wigner/inonu.pdf.
  28. Inönü, E., and E. Wigner. 1952. Representations of the Galilei group. Nuovo Cimento 9: 705–718.CrossRefzbMATHMathSciNetGoogle Scholar
  29. Inönü, E., and E. Wigner. 1953. On the contraction of groups and their representations. Proceedings of the National Academy of Sciences 39: 510–524.CrossRefzbMATHMathSciNetGoogle Scholar
  30. Lévy-Nahas, M. 1967. Deformation and contraction of Lie algebras. Journal of Mathematical Physics 8: 1211–1223.CrossRefzbMATHMathSciNetGoogle Scholar
  31. Lützen, J. 1982. The prehistory of the theory the distributions, Studies in the History of Mathematics and Physical Sciences, vol. 7. New York: Springer.Google Scholar
  32. Minkowski, H. 1909. Raum und Zeit. Physics Zeitschrift 10: 104–111.Google Scholar
  33. Nijenhuis, A., and R.W. Richardson Jr. 1964. Cohomology and deformations of algebraic structures. Bulletin of the American Mathematical Society 70: 406–411.CrossRefzbMATHMathSciNetGoogle Scholar
  34. Pastrone, F. 1998. Fisica Matematica e Meccanica Razionale, in La Matematica italiana dopo l’unità. Milano: Marcos y Marcos.Google Scholar
  35. Roghi, G. 2005. Materiale per una Storia dell’Istituto Nazionale di Alta Matematica dal 1939 al 2003, 3–290. VIII-A: Boll. U.M.I. La Matematica nella Società e nella Cultura Ser. VIII.Google Scholar
  36. Rogora, E. 2008. In L’opera di Ugo Amaldi nel contesto della diffusione delle idee di Sophus Lie in Italia, Conferenze, E. Rogora ed., Roma: Nuova Cultura.Google Scholar
  37. Segal, I.E. 1951. A class of operator algebras which are determined by groups. Duke Mathematical Journal 18: 221–265.CrossRefzbMATHMathSciNetGoogle Scholar
  38. Struppa, D.C. 1987. Luigi Fantappiè and the theory of analytic functionals, in Italian Mathematics between the two World Wars (Milan/Gargnano 1986), 393–429. Bologna: Pitagora.Google Scholar
  39. Thomas, L.H. 1941. On unitary representations of the group of De Sitter space. Annals of Mathematics 42: 113–126.CrossRefMathSciNetGoogle Scholar
  40. Weil, A. 1992. The apprenticeship of a mathematician. Boston: Birkhäuser. (Original edition: Souvenirs d’Apprentissage, Birhäuser (1991).CrossRefGoogle Scholar
  41. Zornoff Tàboas, P. 2008. Très momentos no desenvolvimento da Teoria dos Funcionais Analíticos segundo Luigi Fantappiè. Revista Brasileira de História da Matemática 8: 1–12.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Dipartimento di Matematica e InformaticaUniversità di PerugiaPerugiaItaly

Personalised recommendations