Skip to main content
Log in

Effects of web-based adapted physical activity on hippocampal plasticity, cardiorespiratory fitness, symptoms, and cardiometabolic markers in patients with schizophrenia: a randomized, controlled study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Among the lifestyle interventions, the physical activity (PA) has emerged as an adjuvant non-pharmacological treatment improving mental and physical health in patients with schizophrenia (SZPs) and increasing the hippocampus (HCP) volume. Previously investigated PA programs have been face-to-face, and not necessary adapted to patients’ physiological fitness. We propose an innovative 16-week adapted PA program delivered by real-time videoconferencing (e-APA), allowing SZPs to interact with a coach and to manage their physical condition. The primary goal was to demonstrate a greater increase of total HCP volumes in SZPs receiving e-APA compared to that observed in a controlled group. The secondary objectives were to demonstrate the greater effects of e-APA compared to a controlled group on HCP subfields, cardiorespiratory fitness, clinical symptoms, cognitive functions, and lipidic profile. Thirty-five SZPs were randomized to either e-APA or a controlled group receiving a health education program under the same conditions (e-HE). Variables were assessed at pre- and post-intervention time-points. The dropout rate was 11.4%. Compared to the e-HE group, the e-APA group did not have any effect on the HCP total volumes but increased the left subiculum volume. Also, the e-APA group significantly increased cardiorespiratory fitness (VO2max), improved lipidic profile and negative symptoms but not cognitive functions. This study demonstrated the high feasibility and multiple benefits of a remote e-APA program for SZPs. e-APA may increase brain plasticity and improve health outcomes in SZPs, supporting that PA should be an add-on therapeutic intervention. ClinicalTrial.gov on 25 august 2017 (NCT03261817).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author due to legal reasons.

References

  1. Carli M, Kolachalam S, Longoni B, Pintaudi A, Baldini M, Aringhieri S, Fasciani I, Annibale P, Maggio R, Scarselli M (2021) Atypical antipsychotics and metabolic syndrome: from molecular mechanisms to clinical differences. Pharm Basel Switz 14:238. https://doi.org/10.3390/ph14030238

    Article  CAS  Google Scholar 

  2. Correll CU, Detraux J, De LJ, De HM (2015) Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 14:119–136. https://doi.org/10.1002/wps.20204

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh R, Bansal Y, Medhi B, Kuhad A (2019) Antipsychotics-induced metabolic alterations: recounting the mechanistic insights, therapeutic targets and pharmacological alternatives. Eur J Pharmacol 844:231–240. https://doi.org/10.1016/j.ejphar.2018.12.003

    Article  CAS  PubMed  Google Scholar 

  4. Correll CU, Schooler NR (2020) Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat 16:519–534. https://doi.org/10.2147/NDT.S225643

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galderisi S, Kaiser S, Bitter I, Nordentoft M, Mucci A, Sabé M, Giordano GM, Nielsen MØ, Glenthøj LB, Pezzella P, Falkai P, Dollfus S, Gaebel W (2021) EPA guidance on treatment of negative symptoms in schizophrenia. Eur Psychiatry J Assoc Eur Psychiatr 64:e21. https://doi.org/10.1192/j.eurpsy.2021.13

    Article  CAS  Google Scholar 

  6. Keefe RSE, Bilder RM, Davis SM, Harvey PD, Palmer BW, Gold JM, Meltzer HY, Green MF, Capuano G, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Davis CE, Hsiao JK, Lieberman JA, CATIE Investigators, Neurocognitive Working Group (2007) Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 64:633–647. https://doi.org/10.1001/archpsyc.64.6.633

    Article  CAS  PubMed  Google Scholar 

  7. Vancampfort D, Rosenbaum S, Schuch F, Ward PB, Richards J, Mugisha J, Probst M, Stubbs B (2017) Cardiorespiratory fitness in severe mental illness: a systematic review and meta-analysis. Sports Med Auckl NZ 47:343–352. https://doi.org/10.1007/s40279-016-0574-1

    Article  Google Scholar 

  8. Vancampfort D, Rosenbaum S, Ward PB, Stubbs B (2015) Exercise improves cardiorespiratory fitness in people with schizophrenia: a systematic review and meta-analysis. Schizophr Res 169:453–457. https://doi.org/10.1016/j.schres.2015.09.029

    Article  PubMed  Google Scholar 

  9. Firth J, Cotter J, Elliott R, French P, Yung AR (2015) A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 45:1343–1361. https://doi.org/10.1017/S0033291714003110

    Article  CAS  PubMed  Google Scholar 

  10. Kim M, Lee Y, Kang H (2023) Effects of exercise on positive symptoms, negative symptoms, and depression in patients with schizophrenia: a systematic review and meta-analysis. Int J Environ Res Public Health 20:3719. https://doi.org/10.3390/ijerph20043719

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sabe M, Kaiser S, Sentissi O (2020) Physical exercise for negative symptoms of schizophrenia: systematic review of randomized controlled trials and meta-analysis. Gen Hosp Psychiatry 62:13–20. https://doi.org/10.1016/j.genhosppsych.2019.11.002

    Article  PubMed  Google Scholar 

  12. Vogel JS, van der Gaag M, Slofstra C, Knegtering H, Bruins J, Castelein S (2019) The effect of mind-body and aerobic exercise on negative symptoms in schizophrenia: a meta-analysis. Psychiatry Res 279:295–305. https://doi.org/10.1016/j.psychres.2019.03.012

    Article  PubMed  Google Scholar 

  13. Firth J, Stubbs B, Rosenbaum S, Vancampfort D, Malchow B, Schuch F, Elliott R, Nuechterlein KH, Yung AR (2017) Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43:546–556. https://doi.org/10.1093/schbul/sbw115

    Article  PubMed  Google Scholar 

  14. Xu Y, Cai Z, Fang C, Zheng J, Shan J, Yang Y (2022) Impact of aerobic exercise on cognitive function in patients with schizophrenia during daily care: A meta-analysis. Psychiatry Res 312:114560. https://doi.org/10.1016/j.psychres.2022.114560

    Article  PubMed  Google Scholar 

  15. Schmitt A, Maurus I, Rossner MJ, Röh A, Lembeck M, von Wilmsdorff M, Takahashi S, Rauchmann B, Keeser D, Hasan A, Malchow B, Falkai P (2018) Effects of aerobic exercise on metabolic syndrome, cardiorespiratory fitness, and symptoms in schizophrenia include decreased mortality. Front Psychiatry 9:690. https://doi.org/10.3389/fpsyt.2018.00690

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aghjayan SL, Lesnovskaya A, Esteban-Cornejo I, Peven JC, Stillman CM, Erickson KI (2021) Aerobic exercise, cardiorespiratory fitness, and the human hippocampus. Hippocampus 31:817–844. https://doi.org/10.1002/hipo.23337

    Article  PubMed  PubMed Central  Google Scholar 

  17. Seoane S, Ezama L, Janssen N (2022) Daily-life physical activity of healthy young adults associates with function and structure of the hippocampus. Front Hum Neurosci 16:790359. https://doi.org/10.3389/fnhum.2022.790359

    Article  PubMed  PubMed Central  Google Scholar 

  18. Broadhouse KM, Singh MF, Suo C, Gates N, Wen W, Brodaty H, Jain N, Wilson GC, Meiklejohn J, Singh N, Baune BT, Baker M, Foroughi N, Wang Y, Kochan N, Ashton K, Brown M, Li Z, Mavros Y, Sachdev PS, Valenzuela M (2020) Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin 25:102182. https://doi.org/10.1016/j.nicl.2020.102182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Damme KSF, Gupta T, Ristanovic I, Kimhy D, Bryan AD, Mittal VA (2022) Exercise intervention in individuals at clinical high risk for psychosis: benefits to fitness, symptoms, hippocampal volumes, and functional connectivity. Schizophr Bull. https://doi.org/10.1093/schbul/sbac084

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lin J, Chan SK, Lee EH, Chang WC, Tse M, Su WW, Sham P, Hui CL, Joe G, Chan CL, Khong PL, So KF, Honer WG, Chen EY (2015) Aerobic exercise and yoga improve neurocognitive function in women with early psychosis. NPJ Schizophr 1:15047. https://doi.org/10.1038/npjschz.2015.47

    Article  PubMed  PubMed Central  Google Scholar 

  21. McEwen SC, Hardy A, Ellingson BM, Jarrahi B, Sandhu N, Subotnik KL, Ventura J, Nuechterlein KH (2015) Prefrontal and hippocampal brain volume deficits: role of low physical activity on brain plasticity in first-episode schizophrenia patients. J Int Neuropsychol Soc JINS 21:868–879. https://doi.org/10.1017/S1355617715000983

    Article  PubMed  Google Scholar 

  22. Khonsari NM, Badrfam R, Mohammdi MR, Rastad H, Etemadi F, Vafaei Z, Zandifar A (2022) Effect of aerobic exercise as adjunct therapy on the improvement of negative symptoms and cognitive impairment in patients with schizophrenia: a randomized, case-control clinical trial. J Psychosoc Nurs Ment Health Serv 60:38–43. https://doi.org/10.3928/02793695-20211014-03

    Article  PubMed  Google Scholar 

  23. Pajonk F-G, Wobrock T, Gruber O, Scherk H, Berner D, Kaizl I, Kierer A, Müller S, Oest M, Meyer T, Backens M, Schneider-Axmann T, Thornton AE, Honer WG, Falkai P (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67:133–143. https://doi.org/10.1001/archgenpsychiatry.2009.193

    Article  PubMed  Google Scholar 

  24. Woodward ML, Gicas KM, Warburton DE, White RF, Rauscher A, Leonova O, Su W, Smith GN, Thornton AE, Vertinsky AT, Phillips AA, Goghari VM, Honer WG, Lang DJ (2018) Hippocampal volume and vasculature before and after exercise in treatment-resistant schizophrenia. Schizophr Res 202:158–165. https://doi.org/10.1016/j.schres.2018.06.054

    Article  CAS  PubMed  Google Scholar 

  25. Sack M, Lenz JN, Jakovcevski M, Biedermann SV, Falfán-Melgoza C, Deussing J, Bielohuby M, Bidlingmaier M, Pfister F, Stalla GK, Sartorius A, Gass P, Weber-Fahr W, Fuss J, Auer MK (2017) Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav 11:1385–1396. https://doi.org/10.1007/s11682-016-9638-y

    Article  PubMed  Google Scholar 

  26. Haukvik UK, Tamnes CK, Söderman E, Agartz I (2018) Neuroimaging hippocampal subfields in schizophrenia and bipolar disorder: a systematic review and meta-analysis. J Psychiatr Res 104:217–226. https://doi.org/10.1016/j.jpsychires.2018.08.012

    Article  PubMed  Google Scholar 

  27. Nakahara S, Turner JA, Calhoun VD, Lim KO, Mueller B, Bustillo JR, O’Leary DS, McEwen S, Voyvodic J, Belger A, Mathalon DH, Ford JM, Macciardi F, Matsumoto M, Potkin SG, van Erp TGM (2020) Dentate gyrus volume deficit in schizophrenia. Psychol Med 50:1267–1277. https://doi.org/10.1017/S0033291719001144

    Article  PubMed  Google Scholar 

  28. Ota M, Sato N, Hidese S, Teraishi T, Maikusa N, Matsuda H, Hattori K, Kunugi H (2017) Structural differences in hippocampal subfields among schizophrenia patients, major depressive disorder patients, and healthy subjects. Psychiatry Res Neuroimaging 259:54–59. https://doi.org/10.1016/j.pscychresns.2016.11.002

    Article  PubMed  Google Scholar 

  29. van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, Agartz I, Westlye LT, Haukvik UK, Dale AM, Melle I, Hartberg CB, Gruber O, Kraemer B, Zilles D, Donohoe G, Kelly S, McDonald C, Morris DW, Cannon DM, Corvin A, Machielsen MWJ, Koenders L, de Haan L, Veltman DJ, Satterthwaite TD, Wolf DH, Gur RC, Gur RE, Potkin SG, Mathalon DH, Mueller BA, Preda A, Macciardi F, Ehrlich S, Walton E, Hass J, Calhoun VD, Bockholt HJ, Sponheim SR, Shoemaker JM, van Haren NEM, Hulshoff Pol HE, Pol HEH, Ophoff RA, Kahn RS, Roiz-Santiañez R, Crespo-Facorro B, Wang L, Alpert KI, Jönsson EG, Dimitrova R, Bois C, Whalley HC, McIntosh AM, Lawrie SM, Hashimoto R, Thompson PM, Turner JA (2016) Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry 21:547–553. https://doi.org/10.1038/mp.2015.63

    Article  PubMed  Google Scholar 

  30. Ho NF, Iglesias JE, Sum MY, Kuswanto CN, Sitoh YY, De Souza J, Hong Z, Fischl B, Roffman JL, Zhou J, Sim K, Holt DJ (2017) Progression from selective to general involvement of hippocampal subfields in schizophrenia. Mol Psychiatry 22:142–152. https://doi.org/10.1038/mp.2016.4

    Article  CAS  PubMed  Google Scholar 

  31. Hu N, Luo C, Zhang W, Yang X, Xiao Y, Sweeney JA, Lui S, Gong Q (2020) Hippocampal subfield alterations in schizophrenia: A selective review of structural MRI studies. Biomark Neuropsychiatry 3:100026. https://doi.org/10.1016/j.bionps.2020.100026

    Article  Google Scholar 

  32. Nakahara S, Matsumoto M, van Erp TGM (2018) Hippocampal subregion abnormalities in schizophrenia: a systematic review of structural and physiological imaging studies. Neuropsychopharmacol Rep 38:156–166. https://doi.org/10.1002/npr2.12031

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maurus I, Hasan A, Röh A, Takahashi S, Rauchmann B, Keeser D, Malchow B, Schmitt A, Falkai P (2019) Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 269:499–515. https://doi.org/10.1007/s00406-019-01025-w

    Article  PubMed  Google Scholar 

  34. van der Stouwe ECD, van Busschbach JT, de Vries B, Cahn W, Aleman A, Pijnenborg GHM (2018) Neural correlates of exercise training in individuals with schizophrenia and in healthy individuals: a systematic review. NeuroImage Clin 19:287–301. https://doi.org/10.1016/j.nicl.2018.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vancampfort D, Probst M, De Hert M, Soundy A, Stubbs B, Stroobants M, De Herdt A (2014) Neurobiological effects of physical exercise in schizophrenia: a systematic review. Disabil Rehabil 36:1749–1754. https://doi.org/10.3109/09638288.2013.874505

    Article  PubMed  Google Scholar 

  36. Rosenbaum S, Lagopoulos J, Curtis J, Taylor L, Watkins A, Barry BK, Ward PB (2015) Aerobic exercise intervention in young people with schizophrenia spectrum disorders; improved fitness with no change in hippocampal volume. Psychiatry Res Neuroimaging 232:200–201. https://doi.org/10.1016/j.pscychresns.2015.02.004

    Article  Google Scholar 

  37. Malchow B, Keeser D, Keller K, Hasan A, Rauchmann B-S, Kimura H, Schneider-Axmann T, Dechent P, Gruber O, Ertl-Wagner B, Honer WG, Hillmer-Vogel U, Schmitt A, Wobrock T, Niklas A, Falkai P (2016) Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr Res 173:182–191. https://doi.org/10.1016/j.schres.2015.01.005

    Article  PubMed  Google Scholar 

  38. Scheewe TW, van Haren NEM, Sarkisyan G, Schnack HG, Brouwer RM, de Glint M, Hulshoff Pol HE, Backx FJG, Kahn RS, Cahn W (2013) Exercise therapy, cardiorespiratory fitness and their effect on brain volumes: a randomised controlled trial in patients with schizophrenia and healthy controls. Eur Neuropsychopharmacol 23:675–685. https://doi.org/10.1016/j.euroneuro.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  39. Maurus I, Roell L, Lembeck M, Papazova I, Greska D, Muenz S, Wagner E, Campana M, Schwaiger R, Schneider-Axmann T, Rosenberger K, Hellmich M, Sykorova E, Thieme CE, Vogel BO, Harder C, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Walter H, Wolfarth B, Wölwer W, Henkel K, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P (2023) Exercise as an add-on treatment in individuals with schizophrenia: Results from a large multicenter randomized controlled trial. Psychiatry Res 328:115480. https://doi.org/10.1016/j.psychres.2023.115480

    Article  PubMed  Google Scholar 

  40. Schmitt A, Reich-Erkelenz D, Hasan A, Falkai P (2019) Aerobic exercise in mental disorders: from basic mechanisms to treatment recommendations. Eur Arch Psychiatry Clin Neurosci 269:483–484. https://doi.org/10.1007/s00406-019-01037-6

    Article  PubMed  Google Scholar 

  41. Falkai P, Schmitt A, Rosenbeiger CP, Maurus I, Hattenkofer L, Hasan A, Malchow B, Heim-Ohmayer P, Halle M, Heitkamp M (2022) Aerobic exercise in severe mental illness: requirements from the perspective of sports medicine. Eur Arch Psychiatry Clin Neurosci 272:643–677. https://doi.org/10.1007/s00406-021-01360-x

    Article  PubMed  Google Scholar 

  42. Herbsleb M, Schumann A, Malchow B, Puta C, Schulze PC, Gabriel HW, Bär K-J (2018) Chronotropic incompetence of the heart is associated with exercise intolerance in patients with schizophrenia. Schizophr Res 197:162–169. https://doi.org/10.1016/j.schres.2018.02.020

    Article  PubMed  Google Scholar 

  43. Vancampfort D, Rosenbaum S, Schuch FB, Ward PB, Probst M, Stubbs B (2016) Prevalence and predictors of treatment dropout from physical activity interventions in schizophrenia: a meta-analysis. Gen Hosp Psychiatry 39:15–23. https://doi.org/10.1016/j.genhosppsych.2015.11.008

    Article  PubMed  Google Scholar 

  44. Torous J, Keshavan M (2020) COVID-19, mobile health and serious mental illness. Schizophr Res 218:36–37. https://doi.org/10.1016/j.schres.2020.04.013

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lal S, Gleeson J, Rivard L, D’Alfonso S, Joober R, Malla A, Alvarez-Jimenez M (2020) Adaptation of a digital health innovation to prevent relapse and support recovery in youth receiving services for first-episode psychosis: results from the horyzons-canada phase 1 study. JMIR Form Res 4:e19887. https://doi.org/10.2196/19887

    Article  PubMed  PubMed Central  Google Scholar 

  46. Brunette MF, Ferron JC, McGurk SR, Williams JM, Harrington A, Devitt T, Xie H (2020) Brief, web-based interventions to motivate smokers with schizophrenia: randomized trial. JMIR Ment Health 7:e16524. https://doi.org/10.2196/16524

    Article  PubMed  PubMed Central  Google Scholar 

  47. Laine A, Anttila M, Hirvonen H, Välimäki M (2021) Feasibility of a web-based psychoeducation course and experiences of caregivers living with a person with schizophrenia spectrum disorder: mixed methods study. J Med Internet Res 23:e25480. https://doi.org/10.2196/25480

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sawyer C, McKeon G, Hassan L, Onyweaka H, Martinez Agulleiro L, Guinart D, Torous J, Firth J (2023) Digital health behaviour change interventions in severe mental illness: a systematic review. Psychol Med. https://doi.org/10.1017/S0033291723002064

    Article  PubMed  PubMed Central  Google Scholar 

  49. Langeard A, Bigot L, Maffiuletti NA, Moussay S, Sesboüé B, Quarck G, Gauthier A (2022) Non-inferiority of a home-based videoconference physical training program in comparison with the same program administered face-to-face in healthy older adults: the MOTION randomised controlled trial. Age Ageing 51:afac059. https://doi.org/10.1093/ageing/afac059

    Article  PubMed  Google Scholar 

  50. Tréhout M, Leroux E, Bigot L, Jego S, Leconte P, Reboursière E, Morello R, Chapon P-A, Herbinet A, Quarck G, Dollfus S (2021) A web-based adapted physical activity program (e-APA) versus health education program (e-HE) in patients with schizophrenia and healthy volunteers: study protocol for a randomized controlled trial (PEPSY V@Si). Eur Arch Psychiatry Clin Neurosci 271:325–337. https://doi.org/10.1007/s00406-020-01140-z

    Article  PubMed  Google Scholar 

  51. Schulz KF, Altman DG, Moher D, Consort Group (2010) CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials (Chinese version)]. Zhong Xi Yi Jie He Xue Bao 8:604–612. https://doi.org/10.3736/jcim20100702

    Article  PubMed  Google Scholar 

  52. Stubbs B, Vancampfort D, Hallgren M, Firth J, Veronese N, Solmi M, Brand S, Cordes J, Malchow B, Gerber M, Schmitt A, Correll CU, De Hert M, Gaughran F, Schneider F, Kinnafick F, Falkai P, Möller H-J, Kahl KG (2018) EPA guidance on physical activity as a treatment for severe mental illness: a meta-review of the evidence and Position Statement from the European Psychiatric Association (EPA), supported by the International Organization of Physical Therapists in Mental Health (IOPTMH). Eur Psychiatry 54:124–144. https://doi.org/10.1016/j.eurpsy.2018.07.004

    Article  PubMed  Google Scholar 

  53. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, Nieman DC, Swain DP, College A, of Sports Medicine, (2011) American college of sports medicine position stand. quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 43:1334–1359. https://doi.org/10.1249/MSS.0b013e318213fefb

    Article  PubMed  Google Scholar 

  54. Firth J, Solmi M, Wootton RE, Vancampfort D, Schuch FB, Hoare E, Gilbody S, Torous J, Teasdale SB, Jackson SE, Smith L, Eaton M, Jacka FN, Veronese N, Marx W, Ashdown-Franks G, Siskind D, Sarris J, Rosenbaum S, Carvalho AF, Stubbs B (2020) A meta-review of “lifestyle psychiatry”: the role of exercise, smoking, diet and sleep in the prevention and treatment of mental disorders. World Psychiatry Off J World Psychiatr Assoc WPA 19:360–380. https://doi.org/10.1002/wps.20773

    Article  Google Scholar 

  55. Firth J, Siddiqi N, Koyanagi A, Siskind D, Rosenbaum S, Galletly C, Allan S, Caneo C, Carney R, Carvalho AF, Chatterton ML, Correll CU, Curtis J, Gaughran F, Heald A, Hoare E, Jackson SE, Kisely S, Lovell K, Maj M, McGorry PD, Mihalopoulos C, Myles H, O’Donoghue B, Pillinger T, Sarris J, Schuch FB, Shiers D, Smith L, Solmi M, Suetani S, Taylor J, Teasdale SB, Thornicroft G, Torous J, Usherwood T, Vancampfort D, Veronese N, Ward PB, Yung AR, Killackey E, Stubbs B (2019) The lancet psychiatry commission: a blueprint for protecting physical health in people with mental illness. Lancet Psychiatry 6:675–712. https://doi.org/10.1016/S2215-0366(19)30132-4

    Article  PubMed  Google Scholar 

  56. Firth J, Ward PB, Stubbs B (2019) Editorial: lifestyle psychiatry. Front Psychiatry 10:597. https://doi.org/10.3389/fpsyt.2019.00597

    Article  PubMed  PubMed Central  Google Scholar 

  57. Yushkevich PA, Pluta JB, Wang H, Xie L, Ding S-L, Gertje EC, Mancuso L, Kliot D, Das SR, Wolk DA (2015) Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment. Hum Brain Mapp 36:258–287. https://doi.org/10.1002/hbm.22627

    Article  PubMed  Google Scholar 

  58. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  59. Bull FC, Maslin TS, Armstrong T (2009) Global physical activity questionnaire (GPAQ): nine country reliability and validity study. J Phys Act Health 6:790–804. https://doi.org/10.1123/jpah.6.6.790

    Article  PubMed  Google Scholar 

  60. Markland D, Tobin V (2004) A modification to the behavioural regulation in exercise questionnaire to include an assessment of amotivation. J Sport Exerc Psychol 26:191–196

    Article  Google Scholar 

  61. Green MF, Nuechterlein KH, Gold JM, Barch DM, Cohen J, Essock S, Fenton WS, Frese F, Goldberg TE, Heaton RK, Keefe RSE, Kern RS, Kraemer H, Stover E, Weinberger DR, Zalcman S, Marder SR (2004) Approaching a consensus cognitive battery for clinical trials in schizophrenia: the NIMH-MATRICS conference to select cognitive domains and test criteria. Biol Psychiatry 56:301–307. https://doi.org/10.1016/j.biopsych.2004.06.023

    Article  PubMed  Google Scholar 

  62. Brickenkamp R, Zillmer E (1998) D2—test of attention. Hogrefe Huber

  63. Nuechterlein KH, Luck SJ, Lustig C, Sarter M (2009) CNTRICS final task selection: control of attention. Schizophr Bull 35:182–196. https://doi.org/10.1093/schbul/sbn158

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rey A (1964). Press. Univer- Sitaires Fr.

  65. Wechsler D (2001) MEM-III, Échelle clinique de mémoire de Wechsler: manuel. Éd Cent. Psychol. Appliquée Cop

  66. Wechsler D (1981) WAIS-R manual: Wechsler adult intelligence scale-revised. Psychol. Corp.

  67. Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 16:27–34. https://doi.org/10.1016/j.tics.2011.11.015

    Article  PubMed  Google Scholar 

  68. Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. Percept Mot Ski 8:271–276

    Article  Google Scholar 

  69. Godefroy O, Gibbons L, Diouf M, Nyenhuis D, Roussel M, Black S, Bugnicourt JM, GREFEX study group (2014) Validation of an integrated method for determining cognitive ability: Implications for routine assessments and clinical trials. Cortex J Devoted Study Nerv Syst Behav 54:51–62. https://doi.org/10.1016/j.cortex.2014.01.016

    Article  Google Scholar 

  70. Stroop J (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  71. Johnson-Selfridge M, Zalewski C (2001) Moderator variables of executive functioning in schizophrenia: meta-analytic findings. Schizophr Bull 27:305–316. https://doi.org/10.1093/oxfordjournals.schbul.a006876

    Article  CAS  PubMed  Google Scholar 

  72. Cardebat D, Doyon B, Puel M, Goulet P, Joanette Y (1990) Formal and semantic lexical evocation in normal subjects. performance and dynamics of production as a function of sex, age and educational level. Acta Neurol Belg 90:207–217

    CAS  PubMed  Google Scholar 

  73. Bokat CE, Goldberg TE (2003) Letter and category fluency in schizophrenic patients: a meta-analysis. Schizophr Res 64:73–78. https://doi.org/10.1016/s0920-9964(02)00282-7

    Article  PubMed  Google Scholar 

  74. Zigmond S (1983) The hospital anxiety and depression scale. Acta Psychiatr Scand. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x

    Article  PubMed  Google Scholar 

  75. Fox, Corbin (1989) Indice de Soi Physique

  76. Diener (1985) Validation canadienne-française du “Satisfaction with lifescale”

  77. Smets EM, Garssen B, Bonke B, De Haes JC (1995) The multidimensional fatigue inventory (MFI) psychometric qualities of an instrument to assess fatigue. J Psychosom Res 39:315–325. https://doi.org/10.1016/0022-3999(94)00125-o

    Article  CAS  PubMed  Google Scholar 

  78. Ryff CD, Keyes CL (1995) The structure of psychological well-being revisited. J Pers Soc Psychol 69:719–727. https://doi.org/10.1037//0022-3514.69.4.719

    Article  CAS  PubMed  Google Scholar 

  79. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. SchizophrBull 13:261–276

    CAS  Google Scholar 

  80. Dollfus S, Delouche C, Hervochon C, Mach C, Bourgeois V, Rotharmel M, Tréhout M, Vandevelde A, Guillin O, Morello R (2019) Specificity and sensitivity of the Self-assessment of negative symptoms (SNS) in patients with schizophrenia. Schizophr Res 211:51–55. https://doi.org/10.1016/j.schres.2019.07.012

    Article  PubMed  Google Scholar 

  81. Kirkpatrick B, Saoud JB, Strauss GP, Ahmed AO, Tatsumi K, Opler M, Luthringer R, Davidson M (2018) The brief negative symptom scale (BNSS): sensitivity to treatment effects. Schizophr Res 197:269–273. https://doi.org/10.1016/j.schres.2017.11.031

    Article  PubMed  Google Scholar 

  82. Bègue I, Kaiser S, Kirschner M (2020) Pathophysiology of negative symptom dimensions of schizophrenia - current developments and implications for treatment. Neurosci Biobehav Rev 116:74–88. https://doi.org/10.1016/j.neubiorev.2020.06.004

    Article  PubMed  Google Scholar 

  83. Guy (1976) Clinical Global impression scale. Natl Inst Ment Health

  84. Birchwood M, Smith J, Drury V, Healy J, Macmillan F, Slade M (1994) A self-report Insight Scale for psychosis: reliability, validity and sensitivity to change. Acta Psychiatr Scand 89:62–67. https://doi.org/10.1111/j.1600-0447.1994.tb01487.x

    Article  CAS  PubMed  Google Scholar 

  85. Arnautovska U, Kesby JP, Korman N, Rebar AL, Chapman J, Warren N, Rossell SL, Dark FL, Siskind D (2022) Biopsychology of physical activity in people with schizophrenia: an integrative perspective on barriers and intervention strategies. Neuropsychiatr Dis Treat 18:2917–2926. https://doi.org/10.2147/NDT.S393775

    Article  PubMed  PubMed Central  Google Scholar 

  86. Roell L, Maurus I (2024) Effects of aerobic exercise on hippocampal formation volume in people with schizophrenia – a systematic review and meta-analysis with original data from a randomized-controlled trial. https://doi.org/10.31219/osf.io/y2phs

  87. Firth J, Stubbs B, Vancampfort D, Schuch F, Lagopoulos J, Rosenbaum S, Ward PB (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166:230–238. https://doi.org/10.1016/j.neuroimage.2017.11.007

    Article  PubMed  Google Scholar 

  88. Behr J, Wozny C, Fidzinski P, Schmitz D (2009) Synaptic plasticity in the subiculum. Prog Neurobiol 89:334–342. https://doi.org/10.1016/j.pneurobio.2009.09.002

    Article  PubMed  Google Scholar 

  89. Matsumoto N, Kitanishi T, Mizuseki K (2019) The subiculum: unique hippocampal hub and more. Neurosci Res 143:1–12. https://doi.org/10.1016/j.neures.2018.08.002

    Article  PubMed  Google Scholar 

  90. Potvin O, Doré FY, Goulet S (2007) Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory. Neurobiol Learn Mem 87:669–678. https://doi.org/10.1016/j.nlm.2007.01.002

    Article  PubMed  Google Scholar 

  91. Kern KL, Storer TW, Schon K (2021) Cardiorespiratory fitness, hippocampal subfield volumes, and mnemonic discrimination task performance in aging. Hum Brain Mapp 42:871–892. https://doi.org/10.1002/hbm.25259

    Article  PubMed  Google Scholar 

  92. Varma VR, Tang X, Carlson MC (2016) Hippocampal sub-regional shape and physical activity in older adults. Hippocampus 26:1051–1060. https://doi.org/10.1002/hipo.22586

    Article  PubMed  PubMed Central  Google Scholar 

  93. Maurus I, Roell L, Keeser D, Papazov B, Papazova I, Lembeck M, Roeh A, Wagner E, Hirjak D, Malchow B, Ertl-Wagner B, Stoecklein S, Hasan A, Schmitt A, Meyer-Lindenberg A, Falkai P (2022) Fitness is positively associated with hippocampal formation subfield volumes in schizophrenia: a multiparametric magnetic resonance imaging study. Transl Psychiatry 12:388. https://doi.org/10.1038/s41398-022-02155-x

    Article  PubMed  PubMed Central  Google Scholar 

  94. Szortyka MF, Batista Cristiano V, Belmonte-de-Abreu P (2021) Differential physical and mental benefits of physiotherapy program among patients with schizophrenia and healthy controls suggesting different physical characteristics and needs. Front Psychiatry 12:536767. https://doi.org/10.3389/fpsyt.2021.536767

    Article  PubMed  PubMed Central  Google Scholar 

  95. Herbsleb M, Keller-Varady K, Wobrock T, Hasan A, Schmitt A, Falkai P, Gabriel HHW, Bär K-J, Malchow B (2019) The influence of continuous exercising on chronotropic incompetence in multi-episode schizophrenia. Front Psychiatry 10:90. https://doi.org/10.3389/fpsyt.2019.00090

    Article  PubMed  PubMed Central  Google Scholar 

  96. Fan Z, Wu Y, Shen J, Ji T, Zhan R (2013) Schizophrenia and the risk of cardiovascular diseases: a meta-analysis of thirteen cohort studies. J Psychiatr Res 47:1549–1556. https://doi.org/10.1016/j.jpsychires.2013.07.011

    Article  PubMed  Google Scholar 

  97. Laukkanen JA, Isiozor NM, Kunutsor SK (2022) Objectively assessed cardiorespiratory fitness and all-cause mortality risk: an updated meta-analysis of 37 cohort studies involving 2,258,029 participants. Mayo Clin Proc 97:1054–1073. https://doi.org/10.1016/j.mayocp.2022.02.029

    Article  PubMed  Google Scholar 

  98. Mann S, Beedie C, Jimenez A (2014) Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med Auckl NZ 44:211–221. https://doi.org/10.1007/s40279-013-0110-5

    Article  Google Scholar 

  99. Fernández-Abascal B, Suárez-Pinilla P, Cobo-Corrales C, Crespo-Facorro B, Suárez-Pinilla M (2021) In- and outpatient lifestyle interventions on diet and exercise and their effect on physical and psychological health: a systematic review and meta-analysis of randomised controlled trials in patients with schizophrenia spectrum disorders and first episode of psychosis. Neurosci Biobehav Rev 125:535–568. https://doi.org/10.1016/j.neubiorev.2021.01.005

    Article  PubMed  Google Scholar 

  100. Gurusamy J, Gandhi S, Damodharan D, Ganesan V, Palaniappan M (2018) Exercise, diet and educational interventions for metabolic syndrome in persons with schizophrenia: A systematic review. Asian J Psychiatry 36:73–85. https://doi.org/10.1016/j.ajp.2018.06.018

    Article  Google Scholar 

  101. Shimada T, Ito S, Makabe A, Yamanushi A, Miyasaka S, Takenaka A, Kawano K, Kobayashi M (2022) Aerobic exercise and cognitive functioning in schizophrenia: findings of dose-response analysis from a pilot randomized controlled trial. Schizophr Res 243:443–445. https://doi.org/10.1016/j.schres.2021.07.015

    Article  PubMed  Google Scholar 

  102. Marquez DX, Aguiñaga S, Vásquez PM, Conroy DE, Erickson KI, Hillman C, Stillman CM, Ballard RM, Sheppard BB, Petruzzello SJ, King AC, Powell KE (2020) A systematic review of physical activity and quality of life and well-being. Transl Behav Med 10:1098–1109. https://doi.org/10.1093/tbm/ibz198

    Article  PubMed  PubMed Central  Google Scholar 

  103. Dauwan M, Begemann MJH, Heringa SM, Sommer IE (2016) Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 42:588–599. https://doi.org/10.1093/schbul/sbv164

    Article  PubMed  Google Scholar 

  104. Maurus I, Röll L, Keeser D, Karali T, Papazov B, Hasan A, Schmitt A, Papazova I, Lembeck M, Hirjak D, Thieme CE, Sykorova E, Münz S, Seitz V, Greska D, Campana M, Wagner E, Löhrs L, Pömsl J, Roeh A, Malchow B, Keller-Varady K, Ertl-Wagner B, Stöcklein S, Meyer-Lindenberg A, Falkai P (2022) Associations between aerobic fitness, negative symptoms, cognitive deficits and brain structure in schizophrenia-a cross-sectional study. Schizophr Heidelb Ger 8:63. https://doi.org/10.1038/s41537-022-00269-1

    Article  Google Scholar 

  105. Deste G, Corbo D, Nibbio G, Italia M, Dell’Ovo D, Calzavara-Pinton I, Lisoni J, Barlati S, Gasparotti R, Vita A (2023) Impact of physical exercise alone or in combination with cognitive remediation on cognitive functions in people with schizophrenia: a qualitative critical review. Brain Sci 13:320. https://doi.org/10.3390/brainsci13020320

    Article  PubMed  PubMed Central  Google Scholar 

  106. Vita A, Gaebel W, Mucci A, Sachs G, Barlati S, Giordano GM, Nibbio G, Nordentoft M, Wykes T, Galderisi S (2022) European psychiatric association guidance on treatment of cognitive impairment in schizophrenia. Eur Psychiatry J Assoc Eur Psychiatr 65:e57. https://doi.org/10.1192/j.eurpsy.2022.2315

    Article  Google Scholar 

  107. Bredin SSD, Kaufman KL, Chow MI, Lang DJ, Wu N, Kim DD, Warburton DER (2021) Effects of aerobic, resistance, and combined exercise training on psychiatric symptom severity and related health measures in adults living with schizophrenia: a systematic review and meta-analysis. Front Cardiovasc Med 8:753117. https://doi.org/10.3389/fcvm.2021.753117

    Article  CAS  PubMed  Google Scholar 

  108. Pape LM, Adriaanse MC, Kol J, van Straten A, van Meijel B (2022) Patient-reported outcomes of lifestyle interventions in patients with severe mental illness: a systematic review and meta-analysis. BMC Psychiatry 22:261. https://doi.org/10.1186/s12888-022-03854-x

    Article  PubMed  PubMed Central  Google Scholar 

  109. Marder SR, Galderisi S (2017) The current conceptualization of negative symptoms in schizophrenia. World Psychiatry Off J World Psychiatr Assoc WPA 16:14–24. https://doi.org/10.1002/wps.20385

    Article  Google Scholar 

  110. Shimada T, Ito S, Makabe A, Yamanushi A, Takenaka A, Kobayashi M (2019) Aerobic exercise and cognitive functioning in schizophrenia: A pilot randomized controlled trial. Psychiatry Res 282:112638. https://doi.org/10.1016/j.psychres.2019.112638

    Article  PubMed  Google Scholar 

  111. Cella M, Roberts S, Pillny M, Riehle M, O’Donoghue B, Lyne J, Tomlin P, Valmaggia L, Preti A (2023) Psychosocial and behavioural interventions for the negative symptoms of schizophrenia: a systematic review of efficacy meta-analyses. Br J Psychiatry J Ment Sci. https://doi.org/10.1192/bjp.2023.21

    Article  Google Scholar 

  112. Tréhout M, Dollfus S (2018) Physical activity in patients with schizophrenia: from neurobiology to clinical benefits. L’Encephale 44:538–547. https://doi.org/10.1016/j.encep.2018.05.005

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank neuropsychologists, medical doctors with Perrine Brazo and Meunier Sophie, the Mooven® company with Aline Herbinet, Lucille Bigot, and Adeline Turgis for their contribution to the study. Also, we acknowledge the patients for their participation. Finally, this work was supported by the Normandy Country Council, European Union, in the framework of the ERDF-ESF operational program 2014–2020 (15P04195) and the Pierre Deniker Foundation as funding sources.

Author information

Authors and Affiliations

Authors

Contributions

EL: e-HE program conception and dispensation; participants’ planning and recruitment; acquisition and analyses of data; cognitive assessments; drafting the manuscript and figures. MT: e-HE program conception and dispensation; patients’ recruitment; clinical assessments; MRI assessments; analyses of data; revision of manuscript. ER: cardiac stress test dispensation. RF: technical assistance for HCP segmentation. RM: technical assistance for statistical analyses. OG: patients’ recruitment. GQ: conception and design of the study. SD: conception and design of the study; principal investigator; patients’ recruitment; clinical assessments; MRI assessments; revision of manuscript.

Corresponding author

Correspondence to E. Leroux.

Ethics declarations

Conflict of interest

MT: participated in educational conferences for the following industrial laboratories: Otsuka, Lundbeck, and Janssen. SD: has been an expert and consultant or has participated in educational conferences for the following industrial laboratories or companies: Gedeon Richter, Lundbeck Otsuka, Roche, Takeda, Fabre, Janssen, ONO Pharma, and Verasci. OG: has been an expert and consultant or has participated in educational conferences for the following industrial laboratories or companies: Lundbeck Otsuka, Roche, Takeda, Fabre, Janssen, Bioprojet, and Mapreg. The other authors have no competing conflicts.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroux, E., Tréhout, M., Reboursiere, E. et al. Effects of web-based adapted physical activity on hippocampal plasticity, cardiorespiratory fitness, symptoms, and cardiometabolic markers in patients with schizophrenia: a randomized, controlled study. Eur Arch Psychiatry Clin Neurosci (2024). https://doi.org/10.1007/s00406-024-01818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00406-024-01818-8

Keywords

Navigation