Skip to main content

Advertisement

Log in

Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia

  • Invited Review
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Schizophrenia is a severe neuropsychiatric disease that is associated with neurobiological alterations in multiple brain regions and peripheral organs. Negative symptoms and cognitive deficits are present in about half of patients and are difficult to treat, leading to an unfavorable functional outcome. To investigate the impact of aerobic exercise on various neurobiological parameters, we conducted a narrative review. Add-on aerobic exercise was shown to be effective in improving negative and general symptoms, cognition, global functioning, and quality of life in schizophrenia patients. Based on findings in healthy individuals and animal models, this qualitative review gives an overview of different lines of evidence on how aerobic exercise impacts brain structure and function and molecular mechanisms in patients with schizophrenia and how its effects could be related to clinical and functional outcomes. Structural magnetic resonance imaging studies showed a volume increase in the hippocampus and cortical regions in schizophrenia patients and healthy controls after endurance training. However, results are inconsistent and individual risk factors may influence neuroplastic processes. Animal studies indicate that alterations in epigenetic mechanisms and synaptic plasticity are possible underlying mechanisms, but that differentiation of glial cells, angiogenesis, and possibly neurogenesis may also be involved. Clinical and animal studies also revealed effects of aerobic exercise on the hypothalamus–pituitary–adrenal axis, growth factors, and immune-related mechanisms. Some findings indicate effects on neurotransmitters and the endocannabinoid system. Further research is required to clarify how individual risk factors in schizophrenia patients mediate or moderate the neurobiological effects of exercise on brain and cognition. Altogether, aerobic exercise is a promising candidate in the search for pathophysiology-based add-on interventions in schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Legends: Dauwan et al. [6], Firth et al. [11], Firth et al. [9], Vancampfort et al. [3]

Fig. 2

Legends: Firth et al. [33], Weinstein et al. [35], Svatkova et al. [51], Brockett et al. [68], Voisin et al. [85], van Praag [26], Pereira et al. [77], Szuhany et al. [110], Meeusen and De Meirleir [144], Tantimonaco et al. [177], Stranahan et al. [183], Gomes da Silva et al. [200]

Similar content being viewed by others

References

  1. Fusar-Poli P et al (2015) Treatments of negative symptoms in schizophrenia: meta-analysis of 168 randomized placebo-controlled trials. Schizophr Bull 41(4):892–899

    Article  PubMed  Google Scholar 

  2. Nielsen RE et al (2015) Second-generation antipsychotic effect on cognition in patients with schizophrenia—a meta-analysis of randomized clinical trials. Acta Psychiatr Scand 131(3):185–196

    Article  CAS  PubMed  Google Scholar 

  3. Vancampfort D et al (2012) The functional exercise capacity is correlated with global functioning in patients with schizophrenia. Acta Psychiatr Scand 125(5):382–387

    Article  CAS  PubMed  Google Scholar 

  4. Vancampfort D, Rosenbaum S, Probst M, Stubbs B (2018) Aerobic exercise in people with schizophrenia. In: Budde H, Wegner M (eds) The exercise effect on mental health, neurobiological mechanisms. Routledge, New York

    Google Scholar 

  5. Falkai P, Malchow B, Schmitt A (2017) Aerobic exercise and its effects on cognition in schizophrenia. Curr Opin Psychiatry 30(3):171–175

    Article  PubMed  Google Scholar 

  6. Dauwan M et al (2016) Exercise improves clinical symptoms, quality of life, global functioning, and depression in schizophrenia: a systematic review and meta-analysis. Schizophr Bull 42(3):588–599

    Article  PubMed  Google Scholar 

  7. Malchow B et al (2015) Effects of endurance training combined with cognitive remediation on everyday functioning, symptoms, and cognition in multiepisode schizophrenia patients. Schizophr Bull 41(4):847–858

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schmitz N, Kruse J, Kugler J (2004) The association between physical exercises and health-related quality of life in subjects with mental disorders: results from a cross-sectional survey. Prev Med 39(6):1200–1207

    Article  PubMed  Google Scholar 

  9. Firth J et al (2016) Aerobic exercise improves cognitive functioning in people with schizophrenia: a systematic review and meta-analysis. Schizophr Bull 43(3):546–556

    PubMed Central  Google Scholar 

  10. Rosenbaum S et al (2014) Physical activity interventions for people with mental illness: a systematic review and meta-analysis. J Clin Psychiatry 75(9):964–974

    Article  PubMed  Google Scholar 

  11. Firth J et al (2015) A systematic review and meta-analysis of exercise interventions in schizophrenia patients. Psychol Med 45(7):1343–1361

    Article  CAS  PubMed  Google Scholar 

  12. Scheewe TW et al (2013) Exercise therapy improves mental and physical health in schizophrenia: a randomised controlled trial. Acta Psychiatr Scand 127(6):464–473

    Article  CAS  PubMed  Google Scholar 

  13. Laursen TM, Munk-Olsen T, Vestergaard M (2012) Life expectancy and cardiovascular mortality in persons with schizophrenia. Curr Opin Psychiatry 25(2):83–88

    Article  PubMed  Google Scholar 

  14. Li M et al (2014) Schizophrenia and risk of stroke: a meta-analysis of cohort studies. Int J Cardiol 173(3):588–590

    Article  PubMed  Google Scholar 

  15. Vancampfort D et al (2015) Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. World Psychiatry 14(3):339–347

    Article  PubMed  PubMed Central  Google Scholar 

  16. Vancampfort D et al (2016) Diabetes mellitus in people with schizophrenia, bipolar disorder and major depressive disorder: a systematic review and large scale meta-analysis. World Psychiatry 15(2):166–174

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Hert M et al (2011) Physical illness in patients with severe mental disorders. I. Prevalence, impact of medications and disparities in health care. World Psychiatry 10(1):52–77

    Article  Google Scholar 

  18. Stubbs B et al (2015) How can we promote smoking cessation in people with schizophrenia in practice? A clinical overview. Acta Psychiatr Scand 132(2):122–130

    Article  CAS  PubMed  Google Scholar 

  19. Heald A et al (2015) Diet, exercise and the metabolic syndrome in schizophrenia: a cross-sectional study. Schizophr Res 169(1–3):494–495

    Article  PubMed  Google Scholar 

  20. Stubbs B et al (2016) How much physical activity do people with schizophrenia engage in? A systematic review, comparative meta-analysis and meta-regression. Schizophr Res 176(2–3):431–440

    Article  PubMed  Google Scholar 

  21. Correll CU et al (2015) Effects of antipsychotics, antidepressants and mood stabilizers on risk for physical diseases in people with schizophrenia, depression and bipolar disorder. World Psychiatry 14(2):119–136

    Article  PubMed  PubMed Central  Google Scholar 

  22. Falkai P et al (2015) Kraepelin revisited: schizophrenia from degeneration to failed regeneration. Mol Psychiatry 20(6):671–676

    Article  CAS  PubMed  Google Scholar 

  23. Keller-Varady K et al (2016) Endurance training in patients with schizophrenia and healthy controls: differences and similarities. Eur Arch Psychiatry Clin Neurosci 266(5):461–473

    Article  PubMed  Google Scholar 

  24. Ogunyankin F et al (2018) Effects of exercise-based interventions in severe mental illness: a feasibility study. Eur Arch Psychiatry Clin Neurosci. https://doi.org/10.1007/s00406-018-0864-8

    Article  PubMed  Google Scholar 

  25. Kandola A et al (2016) Aerobic exercise as a tool to improve hippocampal plasticity and function in humans: practical implications for mental health treatment. Front Hum Neurosci 10:373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromol Med 10(2):128–140

    Article  CAS  Google Scholar 

  27. Sack M et al (2017) Early effects of a high-caloric diet and physical exercise on brain volumetry and behavior: a combined MRI and histology study in mice. Brain Imaging Behav 11(5):1385–1396

    Article  PubMed  Google Scholar 

  28. van Praag H et al (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vivar C, Potter MC, van Praag H (2013) All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 15:189–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Erickson KI et al (2009) Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus 19(10):1030–1039

    Article  PubMed  PubMed Central  Google Scholar 

  31. Parker BA et al (2011) Effect of exercise training on hippocampal volume in humans: a pilot study. Res Q Exerc Sport 82(3):585–591

    Article  PubMed  Google Scholar 

  32. Voss MW et al (2013) The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. Hum Brain Mapp 34(11):2972–2985

    Article  PubMed  Google Scholar 

  33. Firth J et al (2018) Effect of aerobic exercise on hippocampal volume in humans: a systematic review and meta-analysis. Neuroimage 166:230–238

    Article  PubMed  Google Scholar 

  34. Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130

    Article  PubMed  Google Scholar 

  35. Weinstein AM et al (2012) The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav Immun 26(5):811–819

    Article  PubMed  Google Scholar 

  36. Makizako H et al (2015) Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. J Gerontol A Biol Sci Med Sci 70(4):480–486

    Article  CAS  PubMed  Google Scholar 

  37. Cahill LS et al (2015) MRI-detectable changes in mouse brain structure induced by voluntary exercise. Neuroimage 113:175–183

    Article  PubMed  Google Scholar 

  38. McMorris T, Corbett J (2018) Neurobiological changes and exercise. In: Budde H, Wegner M (eds) The exercise effect on mental health: neurobiological mechanisms. CRC Press

  39. Pajonk FG et al (2010) Hippocampal plasticity in response to exercise in schizophrenia. Arch Gen Psychiatry 67(2):133–143

    Article  PubMed  Google Scholar 

  40. Malchow B et al (2016) Effects of endurance training on brain structures in chronic schizophrenia patients and healthy controls. Schizophr Res 173(3):182–191

    Article  PubMed  Google Scholar 

  41. Papiol S et al (2017) Polygenic risk has an impact on the structural plasticity of hippocampal subfields during aerobic exercise combined with cognitive remediation in multi-episode schizophrenia. Transl Psychiatry 7(6):e1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31(7):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lehmann N, Taubert M (2018) Improvement in motor learning. In: Budde HW (ed) The exercise effect on mental health, neurobiological effects. Routledge, New York

    Google Scholar 

  44. Herting MM et al (2014) White matter connectivity and aerobic fitness in male adolescents. Dev Cognit Neurosci 7:65–75

    Article  Google Scholar 

  45. Burdette JH et al (2010) Using network science to evaluate exercise-associated brain changes in older adults. Front Aging Neurosci 2:23

    PubMed  PubMed Central  Google Scholar 

  46. Sexton CE et al (2016) A systematic review of MRI studies examining the relationship between physical fitness and activity and the white matter of the ageing brain. Neuroimage 131:81–90

    Article  PubMed  Google Scholar 

  47. Fitzsimmons J, Kubicki M, Shenton ME (2013) Review of functional and anatomical brain connectivity findings in schizophrenia. Curr Opin Psychiatry 26(2):172–187

    Article  PubMed  Google Scholar 

  48. Vakhrusheva J et al (2016) Aerobic exercise in people with schizophrenia: neural and neurocognitive benefits. Curr Behav Neurosci Rep 3(2):165–175

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reid MA et al (2016) A combined diffusion tensor imaging and magnetic resonance spectroscopy study of patients with schizophrenia. Schizophr Res 170(2–3):341–350

    Article  PubMed  Google Scholar 

  50. Cassoli JS et al (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Svatkova A et al (2015) Physical exercise keeps the brain connected: biking increases white matter integrity in patients with schizophrenia and healthy controls. Schizophr Bull 41(4):869–878

    Article  PubMed  PubMed Central  Google Scholar 

  52. Basso JC, Suzuki WA (2017) The effects of acute exercise on mood, cognition, neurophysiology, and neurochemical pathways: a review. Brain Plast 2(2):127–152

    Article  PubMed  PubMed Central  Google Scholar 

  53. Colcombe SJ et al (2004) Neurocognitive aging and cardiovascular fitness: recent findings and future directions. J Mol Neurosci 24(1):9–14

    Article  CAS  PubMed  Google Scholar 

  54. Voss MW et al (2010) Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front Aging Neurosci 2:32

    PubMed  PubMed Central  Google Scholar 

  55. Voss MW et al (2016) Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage 131:113–125

    Article  PubMed  Google Scholar 

  56. Cirillo J et al (2009) Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals. J Physiol 587(Pt 24):5831–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Honzak R et al (1985) Changes in the EEG spectrum at a two-week intensive endurance training. Act Nerv Super (Praha) 27(1):10–14

    CAS  Google Scholar 

  58. Gliner JA et al (1979) Visual evoked potentials and signal detection following a marathon race. Med Sci Sports 11(2):155–159

    CAS  PubMed  Google Scholar 

  59. Roeh A et al (2018) Effects of three months of aerobic endurance training on motor cortical excitability in schizophrenia patients and healthy subjects. Neuropsychobiology. https://doi.org/10.1159/000489714

    Article  PubMed  Google Scholar 

  60. Weissleder C, North HF, Weickert CS (2019) Important unanswered questions about adult neurogenesis in schizophrenia. Curr Opin Psychiatry 32(3):170–178

    Article  PubMed  Google Scholar 

  61. Van der Borght K et al (2007) Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci 121(2):324–334

    Article  PubMed  Google Scholar 

  62. Uysal N et al (2005) The effects of regular aerobic exercise in adolescent period on hippocampal neuron density, apoptosis and spatial memory. Neurosci Lett 383(3):241–245

    Article  CAS  PubMed  Google Scholar 

  63. Redila VA, Christie BR (2006) Exercise-induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137(4):1299–1307

    Article  CAS  PubMed  Google Scholar 

  64. Clark PJ et al (2008) Intact neurogenesis is required for benefits of exercise on spatial memory but not motor performance or contextual fear conditioning in C57BL/6J mice. Neuroscience 155(4):1048–1058

    Article  CAS  PubMed  Google Scholar 

  65. Biedermann S et al (2012) In vivo voxel based morphometry: detection of increased hippocampal volume and decreased glutamate levels in exercising mice. Neuroimage 61(4):1206–1212

    Article  PubMed  Google Scholar 

  66. Herting MM (2018) Exercise in cognition and motor learning. In: Budde H, Wegner M (eds) The exercise effect on mental health: neurobiological mechanisms. CRC Press

  67. Sorrells SF et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Brockett AT, LaMarca EA, Gould E (2015) Physical exercise enhances cognitive flexibility as well as astrocytic and synaptic markers in the medial prefrontal cortex. PLoS ONE 10(5):e0124859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mei YY, Wu DC, Zhou N (2018) Astrocytic regulation of glutamate transmission in schizophrenia. Front Psychiatry 9:544

    Article  PubMed  PubMed Central  Google Scholar 

  70. Bernardi C et al (2013) Treadmill exercise induces hippocampal astroglial alterations in rats. Neural Plasticity 2013:709732

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krityakiarana W et al (2010) Voluntary exercise increases oligodendrogenesis in spinal cord. Int J Neurosci 120(4):280–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jiang T et al (2017) Physical exercise improves cognitive function together with microglia phenotype modulation and remyelination in chronic cerebral hypoperfusion. Front Cell Neurosci 11:404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomlinson L, Leiton CV, Colognato H (2016) Behavioral experiences as drivers of oligodendrocyte lineage dynamics and myelin plasticity. Neuropharmacology 110(Pt B):548–562

    Article  CAS  PubMed  Google Scholar 

  74. Katsel P et al (2017) Microvascular anomaly conditions in psychiatric disease Schizophrenia–angiogenesis connection. Neurosci Biobehav Rev 77:327–339

    Article  PubMed  PubMed Central  Google Scholar 

  75. Murrell CJ et al (2013) Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age 35(3):905–920

    Article  PubMed  Google Scholar 

  76. Bragina IN, Voelcker-Rehage C (2018) Exercise effect in older adults. In: Budde H, Wegner M (eds) The exercise effect on mental health: neurobiological mechanisms. CRC Press

  77. Pereira AC et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci USA 104(13):5638–5643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Christie BR et al (2008) Exercising our brains: how physical activity impacts synaptic plasticity in the dentate gyrus. Neuromol Med 10(2):47–58

    Article  CAS  Google Scholar 

  79. Glatt SJ et al (2011) Similarities and differences in peripheral blood gene-expression signatures of individuals with schizophrenia and their first-degree biological relatives. Am J Med Genet B Neuropsychiatr Genet 156b(8):869–887

    Article  CAS  PubMed  Google Scholar 

  80. Szyf M (2014) Examining peripheral DNA methylation in behavioral epigenetic and epigenetic psychiatry: opportunities and challenges. Epigenomics 6(6):581–584

    Article  CAS  PubMed  Google Scholar 

  81. Peter CJ, Akbarian S (2011) Balancing histone methylation activities in psychiatric disorders. Trends Mol Med 17(7):372–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schmitt A et al (2014) The impact of environmental factors in severe psychiatric disorders. Front Neurosci 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  83. Schmitt A et al (2017) Consensus paper of the WFSBP task force on biological markers: criteria for biomarkers and endophenotypes of schizophrenia, part III: Molecular mechanisms. World J Biol Psychiatry 18(5):330–356

    Article  PubMed  Google Scholar 

  84. Bahari-Javan S et al (2017) HDAC1 links early life stress to schizophrenia-like phenotypes. Proc Natl Acad Sci USA 114(23):E4686–E4694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Voisin S et al (2015) Exercise training and DNA methylation in humans. Acta Physiol (Oxf) 213(1):39–59

    Article  CAS  Google Scholar 

  86. Fernandes J, Arida RM, Gomez-Pinilla F (2017) Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 80:443–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mega F et al (2018) Paternal physical exercise demethylates the hippocampal DNA of male pups without modifying the cognitive and physical development. Behav Brain Res 348:1–8

    Article  CAS  PubMed  Google Scholar 

  88. Yeshurun S, Hannan AJ (2019) Transgenerational epigenetic influences of paternal environmental exposures on brain function and predisposition to psychiatric disorders. Mol Psychiatry 24(4):536–548

    Article  CAS  PubMed  Google Scholar 

  89. Maejima H et al (2018) Exercise enhances cognitive function and neurotrophin expression in the hippocampus accompanied by changes in epigenetic programming in senescence-accelerated mice. Neurosci Lett 665:67–73

    Article  CAS  PubMed  Google Scholar 

  90. Bianchi M et al (2017) Coordinated actions of MicroRNAs with other epigenetic factors regulate skeletal muscle development and adaptation. Int J Mol Sci 18(4):840

    Article  CAS  PubMed Central  Google Scholar 

  91. Dong J et al (2018) MicroRNA-132 is associated with the cognition improvement following voluntary exercise in SAMP8 mice. Brain Res Bull 140:80–87

    Article  CAS  PubMed  Google Scholar 

  92. Kashimoto RK et al (2016) Physical exercise affects the epigenetic programming of rat brain and modulates the adaptive response evoked by repeated restraint stress. Behav Brain Res 296:286–289

    Article  CAS  PubMed  Google Scholar 

  93. Fernandes J et al (2018) Hippocampal microRNA-mRNA regulatory network is affected by physical exercise. Biochim Biophys Acta 1862(8):1711–1720

    Article  CAS  Google Scholar 

  94. Denham J, Prestes PR (2016) Muscle-enriched MicroRNAs isolated from whole blood are regulated by exercise and are potential biomarkers of cardiorespiratory fitness. Front Genet 7:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kohman RA et al (2011) Voluntary wheel running reverses age-induced changes in hippocampal gene expression. PLoS ONE 6(8):e22654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Molteni R, Ying Z, Gómez-Pinilla F (2002) Differential effects of acute and chronic exercise on plasticity-related genes in the rat hippocampus revealed by microarray. Eur J Neurosci 16(6):1107–1116

    Article  PubMed  Google Scholar 

  97. Radahmadi M, Hosseini N, Alaei H (2016) Effect of exercise, exercise withdrawal, and continued regular exercise on excitability and long-term potentiation in the dentate gyrus of hippocampus. Brain Res 1653:8–13

    Article  CAS  PubMed  Google Scholar 

  98. Zheng F et al (2016) Voluntary running depreciates the requirement of Ca2 + -stimulated cAMP signaling in synaptic potentiation and memory formation. Learn Mem 23(8):442–449

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ohline SM, Abraham WC (2018) Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology 145:3–12

    Article  CAS  PubMed  Google Scholar 

  100. Gomez-Pinilla F, Vaynman S, Ying Z (2008) Brain-derived neurotrophic factor functions as a metabotrophin to mediate the effects of exercise on cognition. Eur J Neurosci 28(11):2278–2287

    Article  PubMed  PubMed Central  Google Scholar 

  101. Binder DK, Scharfman HE (2004) Mini review. Growth Factors 22(3):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Rothman SM, Mattson MP (2013) Activity-dependent, stress-responsive BDNF signaling and the quest for optimal brain health and resilience throughout the lifespan. Neuroscience 239:228–240

    Article  CAS  PubMed  Google Scholar 

  103. Berk M et al (2013) So depression is an inflammatory disease, but where does the inflammation come from? BMC Med 11:200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Tartaglia N et al (2001) Protein synthesis-dependent and-independent regulation of hippocampal synapses by brain-derived neurotrophic factor. J Biol Chem 276(40):37585–37593

    Article  CAS  PubMed  Google Scholar 

  105. Berchtold NC, Castello N, Cotman CW (2010) Exercise and time-dependent benefits to learning and memory. Neuroscience 167(3):588–597

    Article  CAS  PubMed  Google Scholar 

  106. Korte M et al (1995) Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc Natl Acad Sci USA 92(19):8856–8860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neeper SA et al (1995) Exercise and brain neurotrophins. Nature 373(6510):109

    Article  CAS  PubMed  Google Scholar 

  108. Korte M et al (1996) Virus-mediated gene transfer into hippocampal CA1 region restores long-term potentiation in brain-derived neurotrophic factor mutant mice. Proc Natl Acad Sci 93(22):12547–12552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Patterson SL et al (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145

    Article  CAS  PubMed  Google Scholar 

  110. Szuhany KL, Bugatti M, Otto MW (2015) A meta-analytic review of the effects of exercise on brain-derived neurotrophic factor. J Psychiatr Res 60:56–64

    Article  PubMed  Google Scholar 

  111. Mora F, Segovia G, del Arco A (2007) Aging, plasticity and environmental enrichment: structural changes and neurotransmitter dynamics in several areas of the brain. Brain Res Rev 55(1):78–88

    Article  CAS  PubMed  Google Scholar 

  112. Guillin O, Demily C, Thibaut F (2007) Brain-derived neurotrophic factor in schizophrenia and its relation with dopamine. Int Rev Neurobiol 78:377–395

    Article  CAS  PubMed  Google Scholar 

  113. Green MJ et al (2011) Brain-derived neurotrophic factor levels in schizophrenia: a systematic review with meta-analysis. Mol Psychiatry 16(9):960–972

    Article  CAS  PubMed  Google Scholar 

  114. Zhang XY et al (2012) Low BDNF is associated with cognitive impairment in chronic patients with schizophrenia. Psychopharmacology 222(2):277–284

    Article  CAS  PubMed  Google Scholar 

  115. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    Article  CAS  PubMed  Google Scholar 

  116. Kim HJ et al (2014) Increase of circulating BDNF levels and its relation to improvement of physical fitness following 12 weeks of combined exercise in chronic patients with schizophrenia: a pilot study. Psychiatry Res 220(3):792–796

    Article  CAS  PubMed  Google Scholar 

  117. Kuo FC et al (2013) Lifestyle modification and behavior therapy effectively reduce body weight and increase serum level of brain-derived neurotrophic factor in obese non-diabetic patients with schizophrenia. Psychiatry Res 209(2):150–154

    Article  CAS  PubMed  Google Scholar 

  118. Kimhy D et al (2015) The impact of aerobic exercise on brain-derived neurotrophic factor and neurocognition in individuals with schizophrenia: a single-blind, randomized clinical trial. Schizophr Bull 41(4):859–868

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chang Y-T et al (2008) Glucocorticoid signaling and exercise-induced downregulation of the mineralocorticoid receptor in the induction of adult mouse dentate neurogenesis by treadmill running. Psychoneuroendocrinology 33(9):1173–1182

    Article  CAS  PubMed  Google Scholar 

  120. Firth J et al (2017) The pro-cognitive mechanisms of physical exercise in people with schizophrenia. Br J Pharmacol 174(19):3161–3172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Chen MJ, Ivy AS, Russo-Neustadt A (2006) Nitric oxide synthesis is required for exercise-induced increases in hippocampal BDNF and phosphatidylinositol 3′ kinase expression. Brain Res Bull 68(4):257–268

    Article  CAS  PubMed  Google Scholar 

  122. Gill JM (2007) Physical activity, cardiorespiratory fitness and insulin resistance: a short update. Curr Opin Lipidol 18(1):47–52

    Article  CAS  PubMed  Google Scholar 

  123. Pan W, Kastin AJ (2000) Interactions of IGF-1 with the blood-brain barrier in vivo and in situ. Neuroendocrinology 72(3):171–178

    Article  CAS  PubMed  Google Scholar 

  124. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301

    Article  CAS  PubMed  Google Scholar 

  125. Sonntag WE et al (2000) The effects of growth hormone and IGF-1 deficiency on cerebrovascular and brain ageing. J Anat 197(Pt 4):575–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Martinotti G et al (2012) Nerve growth factor and brain-derived neurotrophic factor concentrations in schizophrenia: a review. J Biol Regul Homeost Agents 26(3):347

    CAS  PubMed  Google Scholar 

  127. Venkatasubramanian G et al (2007) Insulin and insulin-like growth factor-1 abnormalities in antipsychotic-naive schizophrenia. Am J Psychiatry 164(10):1557–1560

    Article  PubMed  Google Scholar 

  128. Andrade e Silva B et al (2015) A 20-week program of resistance or concurrent exercise improves symptoms of schizophrenia: results of a blind, randomized controlled trial. Rev Bras de Psiquiatr 37(4):271–279

    Article  Google Scholar 

  129. Gavin TP et al (2004) Angiogenic growth factor response to acute systemic exercise in human skeletal muscle. J Appl Physiol 96(1):19–24

    Article  CAS  PubMed  Google Scholar 

  130. Gustafsson T et al (2002) Increased expression of vascular endothelial growth factor in human skeletal muscle in response to short-term one-legged exercise training. Pflügers Archiv 444(6):752–759

    Article  CAS  PubMed  Google Scholar 

  131. Tang K et al (2010) Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 170(1):16–22

    Article  CAS  PubMed  Google Scholar 

  132. Misiak B et al (2018) Vascular endothelial growth factor in patients with schizophrenia: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 86:24–29

    Article  CAS  PubMed  Google Scholar 

  133. Gómez-Pinilla F, Dao L, So V (1997) Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res 764(1–2):1–8

    Article  PubMed  Google Scholar 

  134. Hunsberger JG et al (2007) Antidepressant actions of the exercise-regulated gene VGF. Nat Med 13(12):1476

    Article  CAS  PubMed  Google Scholar 

  135. Van Hoomissen JD et al (2004) Effects of β-adrenoreceptor blockade during chronic exercise on contextual fear conditioning and mRNA for galanin and brain-derived neurotrophic factor. Behav Neurosci 118(6):1378

    Article  CAS  PubMed  Google Scholar 

  136. Voss MW et al (2011) Exercise, brain, and cognition across the life span. J Appl Physiol 111(5):1505–1513

    Article  PubMed  PubMed Central  Google Scholar 

  137. Meeusen R, Piacentini MF, De Meirleir K (2001) Brain microdialysis in exercise research. Sports Med 31(14):965–983

    Article  CAS  PubMed  Google Scholar 

  138. Lee GJ, Park JH, Park HK (2008) Microdialysis applications in neuroscience. Neurol Res 30(7):661–668

    Article  PubMed  Google Scholar 

  139. Buhot MC, Martin S, Segu L (2000) Role of serotonin in memory impairment. Ann Med 32(3):210–221

    Article  CAS  PubMed  Google Scholar 

  140. Naughton M, Mulrooney JB, Leonard BE (2000) A review of the role of serotonin receptors in psychiatric disorders. Hum Psychopharmacol 15(6):397–415

    Article  CAS  PubMed  Google Scholar 

  141. Meeter M et al (2006) Effects of 5-HT on memory and the hippocampus: model and data. Neuropsychopharmacology 31(4):712–720

    Article  CAS  PubMed  Google Scholar 

  142. Gray JA, Roth BL (2007) Molecular targets for treating cognitive dysfunction in schizophrenia. Schizophr Bull 33(5):1100–1119

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen H-I et al (2008) Treadmill exercise enhances passive avoidance learning in rats: the role of down-regulated serotonin system in the limbic system. Neurobiol Learn Mem 89(4):489–496

    Article  CAS  PubMed  Google Scholar 

  144. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188

    Article  CAS  PubMed  Google Scholar 

  145. Blomstrand E (2006) A role for branched-chain amino acids in reducing central fatigue. J Nutr 136(2):544S–547S

    Article  CAS  PubMed  Google Scholar 

  146. Kiank C et al (2010) Psychological stress-induced, IDO1-dependent tryptophan catabolism: implications on immunosuppression in mice and humans. PLoS ONE 5(7):e11825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lee H et al (2013) Regular moderate or intense exercise prevents depression-like behavior without change of hippocampal tryptophan content in chronically tryptophan-deficient and stressed mice. PLoS ONE 8(7):e66996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. McMorris T (2016) Developing the catecholamines hypothesis for the acute exercise-cognition interaction in humans: lessons from animal studies. Physiol Behav 165:291–299

    Article  CAS  PubMed  Google Scholar 

  149. Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76:351–359

    Article  CAS  PubMed  Google Scholar 

  150. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562

    Article  PubMed  PubMed Central  Google Scholar 

  151. Mathes WF et al (2010) Dopaminergic dysregulation in mice selectively bred for excessive exercise or obesity. Behav Brain Res 210(2):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Greenwood BN et al (2011) Long-term voluntary wheel running is rewarding and produces plasticity in the mesolimbic reward pathway. Behav Brain Res 217(2):354–362

    Article  PubMed  Google Scholar 

  153. Goffer Y et al (2013) Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J Neurosci 33(48):19034–19044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Phillips C (2017) Physical activity modulates common neuroplasticity substrates in major depressive and bipolar disorder. Neural Plast 2017:7014146

    PubMed  PubMed Central  Google Scholar 

  155. Deslandes A et al (2009) Exercise and mental health: many reasons to move. Neuropsychobiology 59(4):191–198

    Article  PubMed  Google Scholar 

  156. Holtmaat A, Svoboda K (2009) Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci 10(9):647

    Article  CAS  PubMed  Google Scholar 

  157. Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29(2):97–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Hasan A et al (2014) The glutamate hypothesis of schizophrenia. Fortschr Neurol Psychiatr 82(8):447–456

    Article  CAS  PubMed  Google Scholar 

  159. Jia J et al (2009) Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life Sci 84(15–16):505–511

    Article  CAS  PubMed  Google Scholar 

  160. Sutoo DE, Akiyama K (1996) The mechanism by which exercise modifies brain function. Physiol Behav 60(1):177–181

    Article  CAS  PubMed  Google Scholar 

  161. Maddock RJ et al (2016) Acute modulation of cortical glutamate and GABA content by physical activity. J Neurosci 36(8):2449–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gregoire CA et al (2018) RNA-sequencing reveals unique transcriptional signatures of running and running-independent environmental enrichment in the adult mouse dentate gyrus. Front Mol Neurosci 11:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Vasuta C et al (2007) Effects of exercise on NMDA receptor subunit contributions to bidirectional synaptic plasticity in the mouse dentate gyrus. Hippocampus 17(12):1201–1208

    Article  CAS  PubMed  Google Scholar 

  164. Ren H et al (2017) Effects of different training loads on emotional state and mRNA and protein expressions of N-methyl-D-aspartate receptor subunits, postsynaptic density 95, and kinesin family member 17 in hippocampus of rats. Med Sci Monit 23:4954–4960

    Article  PubMed  PubMed Central  Google Scholar 

  165. Martin-Ruiz CM et al (2003) Dementia rating and nicotinic receptor expression in the prefrontal cortex in schizophrenia. Biol Psychiatry 54(11):1222–1233

    Article  CAS  PubMed  Google Scholar 

  166. Wong DF et al (2018) Brain PET imaging of alpha7-nAChR with [18F]ASEM: reproducibility, occupancy, receptor density, and changes in schizophrenia. Int J Neuropsychopharmacol 21(7):656–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jones C (2018) alpha7 nicotinic acetylcholine receptor: a potential target in treating cognitive decline in schizophrenia. J Clin Psychopharmacol 38(3):247–249

    Article  CAS  PubMed  Google Scholar 

  168. Segal-Gavish H et al (2017) Voluntary exercise improves cognitive deficits in female dominant-negative DISC1 transgenic mouse model of neuropsychiatric disorders. World J Biol Psychiatry 20(3):243–252

    Article  PubMed  Google Scholar 

  169. Fordyce D, Farrar R (1991) Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behav Brain Res 46(2):123–133

    Article  CAS  PubMed  Google Scholar 

  170. Giocomo LM, Hasselmo ME (2007) Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol Neurobiol 36(2):184–200

    Article  CAS  PubMed  Google Scholar 

  171. Buzsaki G (2005) Theta rhythm of navigation: link between path integration and landmark navigation, episodic and semantic memory. Hippocampus 15(7):827–840

    Article  PubMed  Google Scholar 

  172. Leweke FM et al (2018) Role of the endocannabinoid system in the pathophysiology of schizophrenia: implications for pharmacological intervention. CNS Drugs 32(7):605–619

    Article  PubMed  Google Scholar 

  173. Ibarra-Lecue, I., et al., The endocannabinoid system in mental disorders: Evidence from human brain studies. Biochem Pharmacol, 2018

  174. Dietrich A, McDaniel WF (2004) Endocannabinoids and exercise. Br J Sports Med 38(5):536–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4(11):873–884

    Article  CAS  PubMed  Google Scholar 

  176. Sparling P et al (2003) Exercise activates the endocannabinoid system. NeuroReport 14(17):2209–2211

    Article  CAS  PubMed  Google Scholar 

  177. Tantimonaco M et al (2014) Physical activity and the endocannabinoid system: an overview. Cell Mol Life Sci 71(14):2681–2698

    Article  CAS  PubMed  Google Scholar 

  178. Grassmann VM, Faulkner G, Can PA (2018) Prevent mental illness? In: Budde H, Wegner M (eds) The exercise effect on mental health: neurobiological mechanisms. CRC Press

  179. Walker E, Mittal V, Tessner K (2008) Stress and the hypothalamic pituitary adrenal axis in the developmental course of schizophrenia. Annu Rev Clin Psychol 4:189–216

    Article  PubMed  Google Scholar 

  180. Steen NE et al (2014) Altered systemic cortisol metabolism in bipolar disorder and schizophrenia spectrum disorders. J Psychiatr Res 52:57–62

    Article  PubMed  Google Scholar 

  181. Holsen LM et al (2013) HPA-axis hormone modulation of stress response circuitry activity in women with remitted major depression. Neuroscience 250:733–742

    Article  CAS  PubMed  Google Scholar 

  182. Murakami S et al (2005) Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 53(2):129–139

    Article  CAS  PubMed  Google Scholar 

  183. Stranahan AM, Lee K, Mattson MP (2008) Central mechanisms of HPA axis regulation by voluntary exercise. NeuroMol Med 10(2):118–127

    Article  CAS  Google Scholar 

  184. Hayes LD et al (2015) Exercise-induced responses in salivary testosterone, cortisol, and their ratios in men: a meta-analysis. Sports Med 45(5):713–726

    Article  PubMed  Google Scholar 

  185. Bi S et al (2005) Running wheel activity prevents hyperphagia and obesity in Otsuka long-evans Tokushima Fatty rats: role of hypothalamic signaling. Endocrinology 146(4):1676–1685

    Article  CAS  PubMed  Google Scholar 

  186. Droste SK et al (2007) Voluntary exercise impacts on the rat hypothalamic-pituitary-adrenocortical axis mainly at the adrenal level. Neuroendocrinology 86(1):26–37

    Article  CAS  PubMed  Google Scholar 

  187. Park E et al (2005) Changes in basal hypothalamo-pituitary-adrenal activity during exercise training are centrally mediated. Am J Physiol Regul Integr Comp Physiol 289(5):R1360–R1371

    Article  CAS  PubMed  Google Scholar 

  188. Trepanier MO et al (2016) Postmortem evidence of cerebral inflammation in schizophrenia: a systematic review. Mol Psychiatry 21(8):1009–1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Potvin S et al (2008) Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol Psychiatry 63(8):801–808

    Article  CAS  PubMed  Google Scholar 

  190. van Kesteren CF et al (2017) Immune involvement in the pathogenesis of schizophrenia: a meta-analysis on postmortem brain studies. Transl Psychiatry 7(3):e1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dickerson F et al (2007) C-reactive protein is associated with the severity of cognitive impairment but not of psychiatric symptoms in individuals with schizophrenia. Schizophr Res 93(1):261–265

    Article  PubMed  Google Scholar 

  192. Schmitt A et al (2011) Regulation of immune-modulatory genes in left superior temporal cortex of schizophrenia patients: a genome-wide microarray study. World J Biol Psychiatry 12(3):201–215

    Article  PubMed  Google Scholar 

  193. Kato T et al (2007) Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro. Schizophr Res 92(1–3):108–115

    Article  PubMed  Google Scholar 

  194. Garcia-Bueno B, Caso JR, Leza JC (2008) Stress as a neuroinflammatory condition in brain: damaging and protective mechanisms. Neurosci Biobehav Rev 32(6):1136–1151

    Article  CAS  PubMed  Google Scholar 

  195. Anisman H (2009) Cascading effects of stressors and inflammatory immune system activation: implications for major depressive disorder. J Psychiatry Neurosci 34(1):4–20

    PubMed  PubMed Central  Google Scholar 

  196. Littlefield AM et al (2015) Voluntary exercise attenuates LPS-induced reductions in neurogenesis and increases microglia expression of a proneurogenic phenotype in aged mice. J Neuroinflamm 12:138

    Article  CAS  Google Scholar 

  197. Svensson M, Lexell J, Deierborg T (2015) Effects of physical exercise on neuroinflammation, neuroplasticity, neurodegeneration, and behavior: what we can learn from animal models in clinical settings. Neurorehabil Neural Repair 29(6):577–589

    Article  PubMed  Google Scholar 

  198. Petersen AM, Pedersen BK (2005) The anti-inflammatory effect of exercise. J Appl Physiol 98(4):1154–1162

    Article  CAS  PubMed  Google Scholar 

  199. Teixeira de Lemos E et al (2011) Differential effects of acute (extenuating) and chronic (training) exercise on inflammation and oxidative stress status in an animal model of type 2 diabetes mellitus. Mediat Inflamm. https://doi.org/10.1155/2011/253061

    Article  Google Scholar 

  200. Gomes da Silva S et al (2013) Exercise-induced hippocampal anti-inflammatory response in aged rats. J Neuroinflamm 10:61

    Article  CAS  Google Scholar 

  201. Erion JR et al (2014) Obesity elicits interleukin 1-mediated deficits in hippocampal synaptic plasticity. J Neurosci 34(7):2618–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hamer M, Endrighi R, Poole L (2012) Physical activity, stress reduction, and mood: insight into immunological mechanisms. Methods Mol Biol 934:89–102

    Article  PubMed  Google Scholar 

  203. Eyre H, Baune BT (2012) Neuroimmunological effects of physical exercise in depression. Brain Behav Immun 26(2):251–266

    Article  CAS  PubMed  Google Scholar 

  204. Donges CE, Duffield R, Drinkwater EJ (2010) Effects of resistance or aerobic exercise training on interleukin-6, C-reactive protein, and body composition. Med Sci Sports Exerc 42(2):304–313

    Article  CAS  PubMed  Google Scholar 

  205. Aderbal SL Jr, Latini A (2018) Treating depression with exercise, an immune perspecitve. In: Budde HW (ed) The exercise effect on mental health, neurobiological mechanisms. Routledge, New York

    Google Scholar 

  206. Kadoglou NP et al (2007) The anti-inflammatory effects of exercise training in patients with type 2 diabetes mellitus. Eur J Cardiovasc Prev Rehabil 14(6):837–843

    Article  PubMed  Google Scholar 

  207. Parachikova A, Nichol KE, Cotman CW (2008) Short-term exercise in aged Tg2576 mice alters neuroinflammation and improves cognition. Neurobiol Dis 30(1):121–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Martin SA et al (2013) Effects of voluntary wheel running on LPS-induced sickness behavior in aged mice. Brain Behav Immun 29:113–123

    Article  CAS  PubMed  Google Scholar 

  209. Heggelund J et al (2011) Effects of high aerobic intensity training in patients with schizophrenia—a controlled trial. Nord J Psychiatry 65(4):269–275

    Article  PubMed  PubMed Central  Google Scholar 

  210. McCreadie RG (2003) Diet, smoking and cardiovascular risk in people with schizophrenia. Br J Psychiatry 183(6):534–539

    CAS  PubMed  Google Scholar 

  211. Wu JQ, Kosten TR, Zhang XY (2013) Free radicals, antioxidant defense systems, and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 46:200–206

    Article  CAS  PubMed  Google Scholar 

  212. Raza MU et al (2016) DNA damage in major psychiatric diseases. Neurotox Res 30(2):251–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Sies H (2015) Oxidative stress: a concept in redox biology and medicine. Redox Biol 4:180–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Radak Z et al (2008) Exercise, oxidative stress and hormesis. Ageing Res Rev 7(1):34–42

    Article  CAS  PubMed  Google Scholar 

  215. Malchow B et al (2013) The effects of physical exercise in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263(6):451–467

    Article  PubMed  Google Scholar 

  216. Keller-Varady K et al (2018) A systematic review of trials investigating strength training in schizophrenia spectrum disorders. Schizophr Res 192:64–68

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by the following grants from the German Research Foundation (DFG): Klinische Forschergruppe (KFO) 241, and PsyCourse to PF (FA241/16-1). Further funding was received from the German Federal Ministry of Education and Research (BMBF) through the research network on psychiatric diseases ESPRIT (grant number 01EE1407E) to PF, AH, and AS. The authors would like to thank Jacquie Klesing, BMedSci (Hons), Board-certified Editor in the Life Sciences (ELS), for editing assistance with the manuscript. Ms. Klesing received compensation for her work from the LMU Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Maurus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maurus, I., Hasan, A., Röh, A. et al. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 269, 499–515 (2019). https://doi.org/10.1007/s00406-019-01025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-019-01025-w

Keywords

Navigation