Skip to main content
Log in

Glutamate imbalance in key structure of the default mode network in adults with attention-deficit/hyperactivity disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The default mode network (DMN) is atypically active in patients with ADHD, likely contributing to the inattention patterns observed in patients with the disorder. Nonetheless, magnetic resonance spectroscopy (MRS) studies have rarely targeted the posterior cingulate cortex, a key DMN region, and little is known about the biochemical setting within this network in patients with ADHD. We aimed to assess the differences in metabolite profiles of the posterior cingulate cortex—a key region of the DMN—between patients with ADHD and controls. Five brain metabolites—glutamate, inositol, N-acetyl aspartate, choline, and creatine—were measured through MRS in the posterior cingulate cortex of patients and controls in a 3.0 T scanner. Between-group comparison of neurometabolite concentrations in PCC was performed using multivariate analysis of covariance. A total of 88 patients and 44 controls were included in the analysis. Patients with ADHD showed lower levels of glutamate in the posterior cingulate cortex compared to controls (p = 0.003). Lower concentrations of glutamate in the posterior cingulate cortex suggest that a glutamatergic imbalance within the posterior cingulate cortex might play a role in the pathogenesis of ADHD. Further understanding of the causes and consequences of such glutamate decrease might help explain how some glutamate-related drug effects impact on ADHD symptomatology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data is not publicly available elsewhere, but is available upon reasonable request to the corresponding author.

References

  1. Faraone SV, Banaschewski T, Coghill D et al (2021) The World Federation of ADHD International Consensus Statement: 208 evidence-based conclusions about the disorder. Neurosci Biobehav Rev 128:789–818. https://doi.org/10.1016/j.neubiorev.2021.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  2. Demontis D, Walters RK, Martin J et al (2019) Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet 51:63–75. https://doi.org/10.1038/s41588-018-0269-7

    Article  CAS  PubMed  Google Scholar 

  3. Song P, Zha M, Yang Q et al (2021) The prevalence of adult attention-deficit hyperactivity disorder: a global systematic review and meta-analysis. J Glob Health 11:04009. https://doi.org/10.7189/jogh.11.04009

    Article  PubMed  PubMed Central  Google Scholar 

  4. Faraone SV, Biederman J, Mick E (2006) The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol Med 36:159–165. https://doi.org/10.1017/S003329170500471X

    Article  PubMed  Google Scholar 

  5. Fayyad J, De Graaf R, Kessler R et al (2007) Cross-national prevalence and correlates of adult attention-deficit hyperactivity disorder. Br J Psychiatry 190:402–409. https://doi.org/10.1192/bjp.bp.106.034389

    Article  CAS  PubMed  Google Scholar 

  6. Kessler RC, Adler L, Barkley R et al (2006) The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry 163:716–723. https://doi.org/10.1176/ajp.2006.163.4.716

    Article  PubMed  PubMed Central  Google Scholar 

  7. van Emmerik-van OK, van de Glind G, van den Brink W et al (2012) Prevalence of attention-deficit hyperactivity disorder in substance use disorder patients: a meta-analysis and meta-regression analysis. Drug Alcohol Depend 122:11–19. https://doi.org/10.1016/j.drugalcdep.2011.12.007

    Article  Google Scholar 

  8. Sobanski E, Brüggemann D, Alm B et al (2007) Psychiatric comorbidity and functional impairment in a clinically referred sample of adults with attention-deficit/hyperactivity disorder (ADHD). Eur Arch Psychiatry Clin Neurosci 257:371–377. https://doi.org/10.1007/s00406-007-0712-8

    Article  PubMed  Google Scholar 

  9. Swensen A, Birnbaum HG, Ben Hamadi R et al (2004) Incidence and costs of accidents among attention-deficit/hyperactivity disorder patients. J Adolesc Health 35:346.e1–9

    Article  PubMed  Google Scholar 

  10. Faraone SV (2015) Attention deficit hyperactivity disorder and premature death. Lancet 385:2132–2133. https://doi.org/10.1016/S0140-6736(14)61822-5

    Article  PubMed  Google Scholar 

  11. Biederman J, Faraone SV (2006) The effects of attention-deficit/hyperactivity disorder on employment and household income. MedGenMed 8:12

    PubMed  PubMed Central  Google Scholar 

  12. Fletcher JM (2014) The effects of childhood ADHD on adult labor market outcomes. Health Econ 23:159–181. https://doi.org/10.1002/hec.2907

    Article  PubMed  Google Scholar 

  13. Faraone SV, Glatt SJ (2010) A comparison of the efficacy of medications for adult attention-deficit/hyperactivity disorder using meta-analysis of effect sizes. J Clin Psychiatry 71:754–763. https://doi.org/10.4088/JCP.08m04902pur

    Article  PubMed  Google Scholar 

  14. Purper-Ouakil D, Ramoz N, Lepagnol-Bestel A-M et al (2011) Neurobiology of attention deficit/hyperactivity disorder. Pediatr Res 69:69R-76R. https://doi.org/10.1203/PDR.0b013e318212b40f

    Article  PubMed  Google Scholar 

  15. Tripp G, Wickens JR (2009) Neurobiology of ADHD. Neuropharmacology 57:579–589. https://doi.org/10.1016/j.neuropharm.2009.07.026

    Article  CAS  PubMed  Google Scholar 

  16. Faraone SV, Asherson P, Banaschewski T et al (2015) Attention-deficit/hyperactivity disorder. Nat Rev Dis Primers 1:15020. https://doi.org/10.1038/nrdp.2015.20

    Article  PubMed  Google Scholar 

  17. Cortese S, Kelly C, Chabernaud C et al (2012) Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry 169:1038–1055. https://doi.org/10.1176/appi.ajp.2012.11101521

    Article  PubMed  Google Scholar 

  18. Hoogman M, Muetzel R, Guimaraes JP et al (2019) Brain imaging of the cortex in ADHD: a coordinated analysis of large-scale clinical and population-based samples. Am J Psychiatry 176:531–542. https://doi.org/10.1176/appi.ajp.2019.18091033

    Article  PubMed  PubMed Central  Google Scholar 

  19. Castellanos FX, Margulies DS, Kelly C et al (2008) Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63:332–337. https://doi.org/10.1016/j.biopsych.2007.06.025

    Article  PubMed  Google Scholar 

  20. Sun L, Cao Q, Long X et al (2012) Abnormal functional connectivity between the anterior cingulate and the default mode network in drug-naïve boys with attention deficit hyperactivity disorder. Psychiatry Res 201:120–127. https://doi.org/10.1016/j.pscychresns.2011.07.001

    Article  PubMed  Google Scholar 

  21. Tomasi D, Volkow ND, Wang GJ et al (2011) Methylphenidate enhances brain activation and deactivation responses to visual attention and working memory tasks in healthy controls. Neuroimage 54:3101–3110. https://doi.org/10.1016/j.neuroimage.2010.10.060

    Article  CAS  PubMed  Google Scholar 

  22. Vidor MV, Panzenhagen AC, Martins AR et al (2022) Emerging findings of glutamate-glutamine imbalance in the medial prefrontal cortex in attention deficit/hyperactivity disorder: systematic review and meta-analysis of spectroscopy studies. Eur Arch Psychiatry Clin Neurosci 272:1395–1411. https://doi.org/10.1007/s00406-022-01397-6

    Article  PubMed  Google Scholar 

  23. Del Sole A, Gambini A, Falini A et al (2002) In vivo neurochemistry with emission tomography and magnetic resonance spectroscopy: clinical applications. Eur Radiol 12:2582–2599. https://doi.org/10.1007/s00330-002-1419-x

    Article  PubMed  Google Scholar 

  24. Bertholdo D, Watcharakorn A, Castillo M (2013) Brain proton magnetic resonance spectroscopy: introduction and overview. Neuroimaging Clin N Am 23:359–380. https://doi.org/10.1016/j.nic.2012.10.002

    Article  PubMed  Google Scholar 

  25. Arcos-Burgos M, Londoño AC, Pineda DA et al (2012) Analysis of brain metabolism by proton magnetic resonance spectroscopy (1H-MRS) in attention-deficit/hyperactivity disorder suggests a generalized differential ontogenic pattern from controls. Atten Defic Hyperact Disord 4:205–212. https://doi.org/10.1007/s12402-012-0088-0

    Article  PubMed  PubMed Central  Google Scholar 

  26. Faraone SV, Biederman J (2005) What is the prevalence of adult ADHD? Results of a population screen of 966 adults. J Atten Disord 9:384–391. https://doi.org/10.1177/1087054705281478

    Article  PubMed  Google Scholar 

  27. Faraone SV, Biederman J (2016) Can attention-deficit/hyperactivity disorder onset occur in adulthood? JAMA Psychiat 73:655–656. https://doi.org/10.1001/jamapsychiatry.2016.0400

    Article  Google Scholar 

  28. Breda V, Rohde LA, Menezes AMB et al (2021) The neurodevelopmental nature of attention-deficit hyperactivity disorder in adults. Br J Psychiatry 218:43–50. https://doi.org/10.1192/bjp.2020.200

    Article  PubMed  Google Scholar 

  29. Grevet EH, Bandeira CE, Vitola ES et al (2024) The course of attention-deficit/hyperactivity disorder through midlife. Eur Arch Psychiatry Clin Neurosci 274:59–70. https://doi.org/10.1007/s00406-022-01531-4

    Article  PubMed  Google Scholar 

  30. Shaw P, Eckstrand K, Sharp W et al (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci USA 104:19649–19654. https://doi.org/10.1073/pnas.0707741104

    Article  PubMed  PubMed Central  Google Scholar 

  31. Karam RG, Breda V, Picon FA et al (2015) Persistence and remission of ADHD during adulthood: a 7-year clinical follow-up study. Psychol Med 45:2045–2056. https://doi.org/10.1017/S0033291714003183

    Article  CAS  PubMed  Google Scholar 

  32. von Elm E, Altman DG, Egger M et al (2007) The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Epidemiology 18:800–804. https://doi.org/10.1097/EDE.0b013e3181577654

    Article  Google Scholar 

  33. Wilson M, Reynolds G, Kauppinen RA et al (2011) A constrained least-squares approach to the automated quantitation of in vivo 1H magnetic resonance spectroscopy data. Magn Reson Med 65:1–12. https://doi.org/10.1002/mrm.22579

    Article  CAS  PubMed  Google Scholar 

  34. Ostojic J, Kozic D, Ostojic SM (2019) N-Acetylaspartate-to-creatine ratio in twelve brain locations among healthy men and women with different levels of education. Neurosci Lett 692:23–26. https://doi.org/10.1016/j.neulet.2018.10.050

    Article  CAS  PubMed  Google Scholar 

  35. Sokol DK, Dunn DW, Edwards-Brown M, Feinberg J (2002) Hydrogen proton magnetic resonance spectroscopy in autism: preliminary evidence of elevated choline/creatine ratio. J Child Neurol 17:245–249. https://doi.org/10.1177/088307380201700401

    Article  PubMed  Google Scholar 

  36. Yang Z-Y, Quan H, Peng Z-L et al (2015) Proton magnetic resonance spectroscopy revealed differences in the glutamate + glutamine/creatine ratio of the anterior cingulate cortex between healthy and pediatric post-traumatic stress disorder patients diagnosed after 2008 Wenchuan earthquake. Psychiatry Clin Neurosci 69:782–790. https://doi.org/10.1111/pcn.12332

    Article  CAS  PubMed  Google Scholar 

  37. Kreis R (2016) The trouble with quality filtering based on relative Cramér-Rao lower bounds. Magn Reson Med 75:15–18. https://doi.org/10.1002/mrm.25568

    Article  PubMed  Google Scholar 

  38. Landheer K, Juchem C (2021) Are Cramér-Rao lower bounds an accurate estimate for standard deviations in in vivo magnetic resonance spectroscopy? NMR Biomed 34:e4521. https://doi.org/10.1002/nbm.4521

    Article  CAS  PubMed  Google Scholar 

  39. Hammerness P, Biederman J, Petty C et al (2012) Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 18:34–40. https://doi.org/10.1111/j.1755-5949.2010.00226.x

    Article  CAS  PubMed  Google Scholar 

  40. Lázaro L, Bargalló N, Andrés S et al (2012) Proton magnetic resonance spectroscopy in pediatric obsessive-compulsive disorder: longitudinal study before and after treatment. Psychiatry Res 201:17–24. https://doi.org/10.1016/j.pscychresns.2011.01.017

    Article  CAS  PubMed  Google Scholar 

  41. Szulc A, Galinska-Skok B, Waszkiewicz N et al (2013) Proton magnetic resonance spectroscopy changes after antipsychotic treatment. Curr Med Chem 20:414–427

    CAS  PubMed  Google Scholar 

  42. Kimko HC, Cross JT, Abernethy DR (1999) Pharmacokinetics and clinical effectiveness of methylphenidate. Clin Pharmacokinet 37:457–470. https://doi.org/10.2165/00003088-199937060-00002

    Article  CAS  PubMed  Google Scholar 

  43. de la Torre R, Farré M, Navarro M et al (2004) Clinical pharmacokinetics of amfetamine and related substances: monitoring in conventional and non-conventional matrices. Clin Pharmacokinet 43:157–185. https://doi.org/10.2165/00003088-200443030-00002

    Article  PubMed  Google Scholar 

  44. Markowitz JS, Patrick KS (2017) The Clinical Pharmacokinetics of Amphetamines Utilized in the Treatment of Attention-Deficit/Hyperactivity Disorder. J Child Adolesc Psychopharmacol 27:678–689. https://doi.org/10.1089/cap.2017.0071

    Article  CAS  PubMed  Google Scholar 

  45. IBM Corp (2015) IBM SPSS Statistics for Windows. IBM Corp, Armonk

    Google Scholar 

  46. Hädel S, Wirth C, Rapp M et al (2013) Effects of age and sex on the concentrations of glutamate and glutamine in the human brain. J Magn Reson Imaging 38:1480–1487. https://doi.org/10.1002/jmri.24123

    Article  PubMed  Google Scholar 

  47. Miller E, Thomas TC, Gerhardt GA et al (2013) Dopamine and glutamate interactions in ADHD: implications for the future neuropharmacology of ADHD. In: Banerjee S (ed) Attention deficit hyperactivity disorder in children and adolescents. InTech, New York

    Google Scholar 

  48. Pavlović ZM (2015) Modulators of glutamatergic signaling as potential treatments of neuropsychiatric disorders. Nova Biomedical, New York

  49. Naaijen J, Lythgoe DJ, Zwiers MP et al (2018) Anterior cingulate cortex glutamate and its association with striatal functioning during cognitive control. Eur Neuropsychopharmacol 28:381–391. https://doi.org/10.1016/j.euroneuro.2018.01.002

    Article  CAS  PubMed  Google Scholar 

  50. Perlov E, Philipsen A, Hesslinger B et al (2007) Reduced cingulate glutamate/glutamine-to-creatine ratios in adult patients with attention deficit/hyperactivity disorder—a magnet resonance spectroscopy study. J Psychiatr Res 41:934–941. https://doi.org/10.1016/j.jpsychires.2006.12.007

    Article  CAS  PubMed  Google Scholar 

  51. Bauer J, Werner A, Kohl W et al (2018) Hyperactivity and impulsivity in adult attention-deficit/hyperactivity disorder is related to glutamatergic dysfunction in the anterior cingulate cortex. World J Biol Psychiatry 19:538–546. https://doi.org/10.1080/15622975.2016.1262060

    Article  PubMed  Google Scholar 

  52. Maltezos S, Horder J, Coghlan S et al (2014) Glutamate/glutamine and neuronal integrity in adults with ADHD: a proton MRS study. Transl Psychiatry 4:e373. https://doi.org/10.1038/tp.2014.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dramsdahl M, Ersland L, Plessen KJ et al (2011) Adults with attention-deficit/hyperactivity disorder—a brain magnetic resonance spectroscopy study. Front Psychiatry 2:65. https://doi.org/10.3389/fpsyt.2011.00065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ferreira PEMS, Palmini A, Bau CHD et al (2009) Differentiating attention-deficit/hyperactivity disorder inattentive and combined types: a (1)H-magnetic resonance spectroscopy study of fronto-striato-thalamic regions. J Neural Transm 116:623–629. https://doi.org/10.1007/s00702-009-0191-3

    Article  PubMed  Google Scholar 

  55. Perlov E, Tebarzt van Elst L, Buechert M et al (2010) H1-MR-spectroscopy of cerebellum in adult attention deficit/hyperactivity disorder. J Psychiatr Res 44:938–943. https://doi.org/10.1016/j.jpsychires.2010.02.016

    Article  CAS  PubMed  Google Scholar 

  56. Huang X, Wang M, Zhang Q et al (2019) The role of glutamate receptors in attention-deficit/hyperactivity disorder: From physiology to disease. Am J Med Genet B Neuropsychiatr Genet 180:272–286. https://doi.org/10.1002/ajmg.b.32726

    Article  CAS  PubMed  Google Scholar 

  57. Hu Y, Chen X, Gu H, Yang Y (2013) Resting-state glutamate and GABA concentrations predict task-induced deactivation in the default mode network. J Neurosci 33:18566–18573. https://doi.org/10.1523/JNEUROSCI.1973-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Findling RL, McNamara NK, Stansbrey RJ et al (2007) A pilot evaluation of the safety, tolerability, pharmacokinetics, and effectiveness of memantine in pediatric patients with attention-deficit/hyperactivity disorder combined type. J Child Adolesc Psychopharmacol 17:19–33. https://doi.org/10.1089/cap.2006.0044

    Article  PubMed  Google Scholar 

  59. Surman CBH, Hammerness PG, Petty C et al (2013) A pilot open label prospective study of memantine monotherapy in adults with ADHD. World J Biol Psychiatry 14:291–298. https://doi.org/10.3109/15622975.2011.623716

    Article  PubMed  Google Scholar 

  60. Ludolph AG, Udvardi PT, Schaz U et al (2010) Atomoxetine acts as an NMDA receptor blocker in clinically relevant concentrations. Br J Pharmacol 160:283–291. https://doi.org/10.1111/j.1476-5381.2010.00707.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Palomero-Gallagher N, Vogt BA, Schleicher A et al (2009) Receptor architecture of human cingulate cortex: evaluation of the four-region neurobiological model. Hum Brain Mapp 30:2336–2355. https://doi.org/10.1002/hbm.20667

    Article  PubMed  Google Scholar 

  62. Aoki Y, Inokuchi R, Suwa H, Aoki A (2013) Age-related change of neurochemical abnormality in attention-deficit hyperactivity disorder: a meta-analysis. Neurosci Biobehav Rev 37:1692–1701. https://doi.org/10.1016/j.neubiorev.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  63. Near J, Harris AD, Juchem C et al (2021) Preprocessing, analysis and quantification in single-voxel magnetic resonance spectroscopy: experts’ consensus recommendations. NMR Biomed 34:e4257. https://doi.org/10.1002/nbm.4257

    Article  PubMed  Google Scholar 

  64. Ramadan S, Lin A, Stanwell P (2013) Glutamate and glutamine: a review of in vivo MRS in the human brain. NMR Biomed 26:1630–1646. https://doi.org/10.1002/nbm.3045

    Article  CAS  PubMed  Google Scholar 

  65. Sonnewald U, Schousboe A (2016) Introduction to the glutamate-glutamine cycle. Adv Neurobiol 13:1–7. https://doi.org/10.1007/978-3-319-45096-4_1

    Article  PubMed  Google Scholar 

Download references

Funding

The authors would like to acknowledge the patients assessed in ProDAH-A and all its members. This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, Finance Code 001) and FIPE-HCPA 160600, GPPG-HCPA 01–321. In addition to the financial support received from the Conselho Nacional de Desenvolvimento Científco e Tecnológico (Grants 466,722/2014–1, 424,041/2016–2, 426,905/2016–2, 140,853/2019–7), grant #2020/05652–0 São Paulo Research Foundation (FAPESP), and the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Grants PqG-19/2551–0001731-6; PqG-19/2551–0001668-9). The funding agencies mentioned were not involved in study design, in the collection, analysis and interpretation of data, in the writing of the report or in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenio Horacio Grevet.

Ethics declarations

Conflict of interest

Dr. Vidor was the recipient of a PhD scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES—PBE-DPM, Bolsa Especial para Doutorado em Pesquisa Médica). Luis Augusto Rohde has received honoraria, has been on the speakers’ bureau/advisory board, and/or has acted as a consultant for Medice, Novartis/Sandoz, and Shire/Takeda in the last two years, and receives authorship royalties from OxfordPress and ArtMed. The ADHD and Juvenile Bipolar Disorder Outpatient Programs chaired by him has received unrestricted educational and research support from the following pharmaceutical companies in the last three years: Janssen-Cilag, Novartis/Sandoz, and Shire/Takeda. Eugênio Horácio Grevet has served as a speakers’ bureau/advisory board for Shire Pharmaceuticals in the past 3 years and has received travel awards from Shire for taking part in psychiatric meetings. Dr. Vitola, MSc Bandeira, Mr. Martins, MSc Tavares, Dr. Cupertino, Ms. Panzehagen, Dr. da Silva, Ms. Falkenberg, Mr. Barreto, Dr. Teche, Dr. Picon, Dr. Rovaris, and Dr. Bau reported no biomedical financial interests or potential conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidor, M.V., Vitola, E.S., Bandeira, C.E. et al. Glutamate imbalance in key structure of the default mode network in adults with attention-deficit/hyperactivity disorder. Eur Arch Psychiatry Clin Neurosci (2024). https://doi.org/10.1007/s00406-024-01805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00406-024-01805-z

Keywords

Navigation