Skip to main content
Log in

EEG microstate co-specificity in schizophrenia and obsessive–compulsive disorder

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

The past 20 years of research on EEG microstates has yielded the hypothesis that the imbalance pattern in the temporal dynamics of microstates C (increased) and D (decreased) is specific to schizophrenia. A similar microstate imbalance has been recently found in obsessive–compulsive disorder (OCD). The aim of the present high-density EEG study was to examine whether this pathological microstate pattern is co-specific to schizophrenia and OCD. We compared microstate temporal dynamics using Bayesian analyses, transition probabilities analyses and the Topographic Electrophysiological State Source-Imaging method for source reconstruction in 24 OCD patients and 28 schizophrenia patients, respectively, free of comorbid psychotic and OCD symptoms, and 27 healthy controls. OCD and schizophrenia patients exhibited the same increased contribution of microstate C, decreased duration and contribution of microstate D and greater D → C transition probabilities, compared with controls. A Bayes factor of 4.424 for the contribution of microstate C, 4.600 and 3.824, respectively, for the duration and contribution of microstate D demonstrated that there was no difference in microstate patterns between the two disorders. Source reconstruction further showed undistinguishable dysregulations between the Salience Network (SN), associated with microstate C, and the Executive Control Network (ECN), associated with microstate D, and between the ECN and cognitive cortico-striato-thalamo-cortical (CSTC) loop in the two disorders. The ECN/CSTC loop dysconnectivity was slightly worsened in schizophrenia. Our findings provide substantial evidence for a common aetiological pathway in schizophrenia and OCD, i.e. microstate co-specificity, and same anomalies in salience and external attention processing, leading to co-expression of symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author (BT) upon reasonable request.

References

  1. Sui J, Jiang R, Bustillo J, Calhoun V (2020) Neuroimaging-based individualized prediction of cognition and behaviour for mental disorders and health: methods and promises. Biol Psychiatry 88:818–828. https://doi.org/10.1016/j.biopsycj.2020.02.016

    Article  PubMed  PubMed Central  Google Scholar 

  2. Michel CM, Koenig T (2018) EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage. https://doi.org/10.1016/j.neuroimage.2017.11.062

    Article  PubMed  Google Scholar 

  3. Lehmann D, Pal OH (1987) EEG alpha map series: brain microstates by space-oriented adaptive segmentation. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/0013-4694(87)90025-3

    Article  PubMed  Google Scholar 

  4. Koenig T, Lehmann D, Merlo MC, Koukkou KK (1999) Deviant EEG brain microstate in acute, neuroleptic-naïve schizophrenics at rest. Eur Arch Psychiatry Clin Neurosci 249:205–211. https://doi.org/10.1007/s004060050088

    Article  CAS  PubMed  Google Scholar 

  5. Lehmann D, Faber PL, Galderisi S, Hermann WH, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackerman J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naïve, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156. https://doi.org/10.1016/j.psychresns.2004.05.007

    Article  PubMed  Google Scholar 

  6. Da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, Figueiredp P, Herzog M (2020) EEG microstates are candidate endophenotype for schizophrenia. Nat Commun 11:3086. https://doi.org/10.1038/s41467-020-16914-1

    Article  CAS  Google Scholar 

  7. Schwab S, Koenig T, Morishima Y, Dierks T, Federspiel A, Jann K (2015) Discovering frequency sensitive thalamic nuclei from EEG microstate informed resting state fMRI. Neuroimage 118:386–375. https://doi.org/10.1016/j.neuroimage.2015.06.001

    Article  Google Scholar 

  8. Custo A, Van de Ville D, Wells WM, Tomescu MI, Brunet D, Michel CM (2017) Electroencephalographic Resting-State Networks: Source Localizations of Microstates. Brain Connect 7:671–682. https://doi.org/10.1089/brain.2016.0476

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thirioux B, Langbour N, Bokam P, Renaudin L, Wassouf I, Harika-Germaneau G, Jaafari N (2023) Microstates imbalance is associated with a functional dysregulation of the Resting-State Networks in Obsessive–Compulsive Disorder: a high-density electrical neuroimaging study using the TESS method. Cereb Cortex 33:2593–2611. https://doi.org/10.1096/cercor/bhac.229

    Article  PubMed  Google Scholar 

  10. Britz J, Van de Ville D, Michel CM (2010) BOLD correlates of EEG topography reveal rapid resting-state networks dynamics. Neuroimage 52:1162–1170. https://doi.org/10.1016/j.neuroimage.2010.02.052

    Article  PubMed  Google Scholar 

  11. Menon V (2011) Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn Sci 15:483–506. https://doi.org/10.1016/j.tics.2011.08.003

    Article  PubMed  Google Scholar 

  12. Rieger K, Diaz Hernandez L, Baenninger A, Koenig T (2016) 15 years of microstate research in schizophrenia – where are we? A meta-analysis Front Psychiatry 7:22. https://doi.org/10.3389/fpsyt.2016.00022

    Article  PubMed  Google Scholar 

  13. Tomescu M, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, Schneider M, Debbané M, Eliez S, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: A vulnerability marker of schizophrenia? Schizophr Res 157:175–181. https://doi.org/10.1016/J.schres.2014.05.036

    Article  PubMed  Google Scholar 

  14. Tait L, Tamagnini F, Stothart G, Barvas E, Monaldini C, Frusciante R, Volpini M, Guttman S, Coulthard E, Brown TJ, Kazanina N, Goodfellow M (2020) EEG microstates complexity for aiding early diagnosis of Alzheimer’s disease. Sci Rep 10:17627. https://doi.org/10.1038/s41598-020-74790-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Murphy M, Whitton AE, Deccy S, Ironside ML, Rutherford A, Beltzer M, Sacchet M, Pizzaglia DA (2020) Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology 45:2030–2037. https://doi.org/10.1038/s41386-020-0749-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomescu M, Rihs TA, Roinishvili M, Karahanoglu FI, Schneider M, Menghetti S, Van De Ville D, Brand A, Chkonia, E, Eliez S, Herzog MH, Michel CM, Cappe C (2015) Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant pattern of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophr Res Cogn 10.1016.j.scog.2015.04.005.

  17. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The Mini-International Neuropsychiatric Interview (M.I.N.I): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 59:22–33

    PubMed  Google Scholar 

  18. Goodman WK, Price LH, Rasmussen SA, Mazure C, Delgado P, Heninger GR, Charney DS (1989) The Yale–Brown Obsessive–Compulsive Scale. II Validity Arch Gen Psychiatry 46:1012–1016. https://doi.org/10.1001/archpsyc.199.01810110054008

    Article  CAS  PubMed  Google Scholar 

  19. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 13:261–276. https://doi.org/10.1093/schbul/13.2.261

    Article  CAS  PubMed  Google Scholar 

  20. Ruggeri P, Meziane HB, Koenig T, Brandner CA (2019) A fine-grained time course investigation of brain dynamics during conflict monitoring. Sci Report 9:3667. https://doi.org/10.1038/s41598-019-40277-3

    Article  CAS  Google Scholar 

  21. Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81. https://doi.org/10.1016/0013-4694(87)901414-6

    Article  CAS  PubMed  Google Scholar 

  22. Koenig T, Kottlow M, Stein M, Melie-García L (2011) Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics. Comput Intell Neurosci. https://doi.org/10.1155/2011/938925

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koenig T, Stein M, Grieder M, Kottlow M (2014) A tutorial on data-driven methods for statistically assessing ERP topographies. Brain Topogr 27:72–83. https://doi.org/10.1007/s10548-013-0310-1

    Article  PubMed  Google Scholar 

  24. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21. https://doi.org/10.1016/j.neumeth.2003.10.009

    Article  PubMed  Google Scholar 

  25. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. https://doi.org/10.1109/10.391164

    Article  CAS  PubMed  Google Scholar 

  26. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electrocencephalogr Clin Neurophysiol 48:609–621. https://doi.org/10.1016/0013-4694(80)90419-8

    Article  CAS  Google Scholar 

  27. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48. https://doi.org/10.1006/nimg.2002.1070

    Article  PubMed  Google Scholar 

  28. Quitana DS, Williams DR (2018) Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP. BMC Psychiatry 18:178. https://doi.org/10.1186/s12888-018-1761-4

    Article  Google Scholar 

  29. Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12

    PubMed  Google Scholar 

  30. Michel CM, Murray MM, Lantz G, Gonzales G, Spinelli L, Grave de Peralta R (2004) EEG source imaging. Clin Neurophysiol 115:2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001

    Article  PubMed  Google Scholar 

  31. Brodbeck V, Kuhn A, von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, Michel CM, Laufs H (2012) EEG microstates of wakefulness and NREM sleep. Neuroimage 62:2129–2139. https://doi.org/10.1016/j.neuroimage.2012.05.060

    Article  PubMed  Google Scholar 

  32. Meier SM, Petersen L, Pedersen MG, Arendt MC, Nielsen PR, Mattheisen M, Mors O, Mortensen PB (2014) Obsessive–compulsive disorder as a risk factor for schizophrenia: a nationwide study. JAMA Psychiat 71:1215–1221. https://doi.org/10.1001/jamapsychiatry.2014.1011

    Article  Google Scholar 

  33. Tibbo P, Warnecke L (1999) Obsessive–compulsive disorder in schizophrenia: epidemiological and biologic overlap. J Psychiatry Neurosci 24:15–24

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Katayama H, Gianotti LRR, Isotani T, Faber PL, Sasada K, Kinoshita T, Lehmann D (2007) Classes of multichannel EEG microstates in light and deep hypnotic conditions. Brain Topogr 20:7–14. https://doi.org/10.1007/s10548-007-0024-3

    Article  PubMed  Google Scholar 

  35. Kindler J, Hubl D, Strik WK, Dierks T, Koenig T (2011) Resting-state EEG in schizophrenia: auditory verbal hallucinations are related to shortening of specific microstates. Clin Neurophysiol 112:1179–1182. https://doi.org/10.1016/j.clinph.2010.10.042

    Article  Google Scholar 

  36. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645. https://doi.org/10.1176/appi.ajp.160.4.636

    Article  PubMed  Google Scholar 

  37. Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia, and Alzheimer’s disease. Clin Neurophysiol 124:1106–1114. https://doi.org/10.1016/j.clinph.2013.01.005

    Article  PubMed  Google Scholar 

  38. Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, Dierks T (2007) Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: time and frequency domain approaches. Schizophr Res 97:163–172. https://doi.org/10.1016/j.schres.2007.07.012

    Article  PubMed  Google Scholar 

  39. Stahl SM (2013) Stahl’s Essential Psychopharmacology. Cambridge University Press, Cambridge

    Google Scholar 

  40. Yoshimura M, Koenig T, Irisawa S, Isotani T, Yamada K, Kikuchi M, Okugawa G, Yagyu T, Kinoshita T, Strik W, Strik W, Dierks T (2007) A Pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology 191:995–1004. https://doi.org/10.1007/s00213-007-0737-8

    Article  CAS  PubMed  Google Scholar 

  41. Mackintosh A, Borgwardt S, Studerus E, Riecher-Rössler A, de Bock R, Andreou C (2020) EEG microstates differences in medicated vs. medication-naïve first-episode psychosis patients. Front Psychiatry https://doi.org/10.3389/fpsyt.2020.600606

  42. Achim AM, Maziade M, Raymond E, Olivier D, Mérette C, Roy MA (2011) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37:811–821. https://doi.org/10.1093/schbul/sbp148

    Article  PubMed  Google Scholar 

  43. Buckley PF, Miller BJ, Lehrer DS, Castle DJ (2009) Psychiatric comorbidities and schizophrenia. Schizophr Bull 35:383–402. https://doi.org/10.1093/schbul/sbn135

    Article  PubMed  Google Scholar 

  44. Lykouras L, Alevizos B, Michalopoulou P, Rabavilas A (2003) Obsessive–compulsive symptoms induced by atypical antipsychotics. A review of the reported cases. Prog Neuropsychopharmacol Bio Psychiatry 27:333–346. https://doi.org/10.1016/S0278-5846(03)00039-3

    Article  Google Scholar 

  45. Lopes da Silva F (1991) Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr Clin Neurophysiol. https://doi.org/10.1016/0013-4694(91)90044-5

    Article  PubMed  Google Scholar 

  46. Gross-Isseroff R, Hermesch H, Zohar J, Weizman A (2003) Neuroimaging communality between schizophrenia and obsessive compulsive disorder: a putative basis for schizo-obsessive disorder? World J Biol Psychiatry 4:129–134. https://doi.org/10.1080/15622970310029907

    Article  PubMed  Google Scholar 

  47. Gürsel DA, Avram M, Sorg C, Brandl F, Koch K (2018) Frontoparietal areas link impairments of large-scale intrinsic brain networks with aberrant fronto-striatal interactions in OCD: a meta-analysis of resting-state functional connectivity. Neurosci Biobehav Rev 87:151–160. https://doi.org/10.1016/j.neurobiorev.2018.01.016

    Article  PubMed  Google Scholar 

  48. Moritz S, Peters MJ, Laroi F, Lincoln TM (2010) Metacognitive beliefs in obsessive–compulsive patients: a comparison with healthy and schizophrenia participants. Cogn Neuropsychiatry 15:531–548. https://doi.org/10.1080/13546801003783508

    Article  PubMed  Google Scholar 

  49. Forbes MK, Sunderland M, Rapee RM, Batterham PJ, Calear AL, Carragher N, Ruggero C, Zimmerman M, Baillie AJ, Lynch SJ, Mewton L, Slade T, Krueger RF (2021) A detailed hierarchical model of psychopathology: from individuals symptoms up to the general factor of psychopathology. Clin Psychol Sci 9:139–168. https://doi.org/10.1177/2167702620954799

    Article  PubMed  PubMed Central  Google Scholar 

  50. Costas J, Carrera N, Alonso P, Gurriarán X, Segalás C, Real E, Lopez-Sola C, Mas S, Gasso P, Domenech L, Morell M, Quintela I, Lazaro L, Menchon JM, Estivill X, Carracedo A (2016) Exon-focused genome-wide association study of obsessive–compulsive disorder and shared polygenic risk with schizophrenia. Transl Psychiatry. https://doi.org/10.1038/tp.2016.34

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gürsel DA, Reinholz L, Bremer B, Schmitz-Koep B, Franzmeier N, Avram M, Koch K (2020) Frontoparietal and salience network alterations in obsessive–compulsive disorder: insights from independent component and sliding time window analyses. J Psychiatry Neurosci 45:214–221. https://doi.org/10.1503/jpn.190038

    Article  PubMed  PubMed Central  Google Scholar 

  52. Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB (2014) Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive–compulsive disorder. Hum Brain Mapp 35:2852–2860. https://doi.org/10.1002/hbm.22371

    Article  PubMed  Google Scholar 

  53. Rotgé JY, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B (2009) Meta-analysis of brain volume changes in obsessive–compulsive disorder. Biol Psychiatry 65:75–83. https://doi.org/10.1016/j.biopsych.2008.06.019

    Article  PubMed  Google Scholar 

  54. White TP, Joseph V, Francis ST, Liddle P (2010) Aberrant salience network (bilateral insula and anterior cingulate cortex) connectivity during information processing in schizophrenia. Schizophr Res 123:105–115. https://doi.org/10.1016/j.schres.2010.07.020

    Article  PubMed  Google Scholar 

  55. Dong D, Wang Y, Chang X, Luo C, Yao D (2018) Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr Bull 44:168–181. https://doi.org/10.1093/schbul/sbx034

    Article  PubMed  Google Scholar 

  56. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667. https://doi.org/10.1007/s00429-010-0262-0

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lavallé L, Brunelin J, Bation R, Mondino M (2020) Review of source-monitoring in obsessive–compulsive disorder. World J Psychiatry 10:12–20. https://doi.org/10.5498/wjp.v10.i2.12

    Article  PubMed  PubMed Central  Google Scholar 

  58. O’Connor K, Aardema F (2003) Fusion or confusion in obsessive–compulsive disorder. Psychol Rep 93:2227–2232. https://doi.org/10.2466/pr0.2003.93.1.227

    Article  Google Scholar 

  59. Rotgé JY, Langbour N, Guehl D, Bioulac B, Jaafari N, Allard M, Aouizerate B, Burbaud P (2010) Gray matter alterations in obsessive–compulsive disorder: an anatomic likelihood estimation meta-analysis. Neuropsychopharmacology 35:686–691. https://doi.org/10.1038/npp.2009.175

    Article  CAS  PubMed  Google Scholar 

  60. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23. https://doi.org/10.1176/appi.ajp.160.1.13

    Article  PubMed  Google Scholar 

  61. Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2007) Integrative evidence from neuroimaging and neuropsychological studies of obsessive–compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 10.1016.j.neubiorev.2007.09.005.

  62. Voegler R, Becker MI, Nitsch A, Straube MWHRT (2016) Aberrant network connectivity during error processing in patients with schizophrenia. J Psychiatry Neurosci 41:E3-12. https://doi.org/10.1503/jpn.150092

    Article  PubMed  PubMed Central  Google Scholar 

  63. Fan J, Gan J, Liu W, Zhong M, Liao H, Zhang H, Jinyao Yi, Chan RCK, Tan C, Zhu X (2018) Resting-state default mode network related functional connectivity is associated with sustained attention deficits in schizophrenia and obsessive–compulsive disorder. Front Behav Neurosci 12:319. https://doi.org/10.3389/fnbeh.2018.00319

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zermatten A, Van der Linden M, Laroi F, Ceschi G (2006) Reality monitoring and motor memory in checking-prone individuals. J Anxiety Disord 20:580–596. https://doi.org/10.1016/j.janxdis.2005.08.001

    Article  PubMed  Google Scholar 

  65. Rehn S, Eslick GD, Brakoulias V (2018) A meta-analysis of the effectiveness of different cortical targets used in repetitive transcranial magnetic stimulation (rTMS) for the treatment of obsessive–compulsive disorder (OCD). Psychiatry Q 89:645–665. https://doi.org/10.1007/s11126-018-9566-7

    Article  Google Scholar 

  66. Bonini F, Burle B, Liégeois-Chauvel C, Régis J, Chauvel P, Vidal F (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science 343:888–891. https://doi.org/10.1126/science.1247412

    Article  CAS  PubMed  Google Scholar 

  67. Ning Y, Zheng S, Feng S, Zhang B, Jia H (2021) Potential locations for non-invasive brain stimulation in treating schizophrenia: a resting-state functional connectivity analysis. Front Neurol. https://doi.org/10.3389/fneur.2021.766736

    Article  PubMed  PubMed Central  Google Scholar 

  68. Harika-Germaneau G, Rachid F, Chatard A, Lafay-Chebassier C, Solinas M, Thirioux B, Millet B, Langbour JN (2019) Continuous theta burst stimulation over the supplementary motor area in refractory obsessive–compulsive disorder treatment: A randomized sham-controlled trial. Brain Stimul 12:1565–1571. https://doi.org/10.1016/j.brs.2019.07.019

    Article  CAS  PubMed  Google Scholar 

  69. Harika-Germaneau G, Heit D, Chatard A, Thirioux B, Langbour N, Jaafari N (2020) Treating refractory obsessive–compulsive disorder with transcranial direct current stimulation: an open label study. Brain Behav. https://doi.org/10.1002/brb3.1648

    Article  PubMed  PubMed Central  Google Scholar 

  70. Strelets V, Faber PL, Golikova J,Novototsky-Vlasov V, Koenig T, Gianotti LRRR, Gruzelier JH, Lehmann D (2003) Chronic schizophrenics with positive symptomatology have shortened EEG microstate durations. Clin Neurophysiology 10.1016./s1388-2457(03)00211-6.

Download references

Acknowledgements

The authors thank Carole Chevalier and Maxime Rollin for helping with patients’ recruitment, and Nicolas Bordères and Ryadh Benslimane for helping with patients’ evaluation

Funding

This work was supported by recurrent internal funds from the Centre Hospitalier Henri Laborit (Poitiers, France) and Agence Régionale de Santé en Nouvelle Aquitaine (France).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: BT; data collection: BT, NL; methodology: BT, NL; data analyses: BT, NL, PB; statistical analyses: BT, NL, PB; clinical evaluation: NGB, CW, PML, GHG, BT; writing (original draft): BT; visualization: IW, DD; supervision: BT, NL, NJ; validation: BT, NL, NJ.

Corresponding author

Correspondence to Bérangère Thirioux.

Ethics declarations

Conflict of interest

The authors declare no competing financial or non-financial interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thirioux, B., Langbour, N., Bokam, P. et al. EEG microstate co-specificity in schizophrenia and obsessive–compulsive disorder. Eur Arch Psychiatry Clin Neurosci 274, 207–225 (2024). https://doi.org/10.1007/s00406-023-01642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-023-01642-6

Keywords

Navigation