Skip to main content
Log in

The influence of semantic associations on sentence production in schizophrenia: an fMRI study

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

One of the most prominent symptoms of schizophrenia is thought disorder, which manifests itself in language production difficulties. In patients with thought disorders the associations are loosened and sentence production is impaired. The determining behavioral and neural mechanisms of sentence production are still an important subject of recent research and have not yet been fully understood. The aim of the current study was to examine the influence of associative relations and distractor modalities on sentence production in healthy participants and participants with schizophrenia. Therefore, reaction times and neural activation of 12 healthy subjects and 13 subjects with schizophrenia were compared in an adapted picture word interference paradigm (PWI). No significant group differences were found, neither on the behavioral nor on the neural level. On the behavioral level, for the entire group incremental sentence processing was found, i.e. processing of the second noun only starts after the first noun was processed. At the neural level, activation was discovered in the bilateral caudate nuclei and the cerebellum. Those activations could be related to response enhancement and suppression as well as to the modulation of cognitive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tandon R, Gaebel W, Barch DM et al (2013) Definition and description of schizophrenia in the DSM-5. Schizophr Res 150(1):3–10. https://doi.org/10.1016/j.schres.2013.05.028

    Article  PubMed  Google Scholar 

  2. Kuperberg GR (2010) Language in schizophrenia Part 1: an introduction. Lang Linguistics Compass 4(8):576–589. https://doi.org/10.1111/j.1749-818X.2010.00216.x

    Article  Google Scholar 

  3. Moro A, Bambini V, Bosia M et al (2015) Detecting syntactic and semantic anomalies in schizophrenia. Neuropsychologia 79(Pt A):147–157. https://doi.org/10.1016/j.neuropsychologia.2015.10.030

    Article  PubMed  Google Scholar 

  4. Covington MA, He C, Brown C et al (2005) Schizophrenia and the structure of language: the linguist’s view. Schizophr Res 77(1):85–98. https://doi.org/10.1016/j.schres.2005.01.016

    Article  PubMed  Google Scholar 

  5. Collins AM, Loftus EF (1975) A spreading-activation theory of semantic processing. Psychol Rev 82(6):407

    Article  Google Scholar 

  6. Spitzer M, Braun U, Hermle L et al (1993) Associative semantic network dysfunction in thought-disordered schizophrenic patients. Direct evidence from indirect semantic priming. Biol Psychiatry 34(12):864–877. https://doi.org/10.1016/0006-3223(93)90054-H

    Article  CAS  PubMed  Google Scholar 

  7. Spitzer M (1997) A cognitive neuroscience view of schizophrenic thought disorder. Schizophr Bull 23(1):29–50

    Article  CAS  PubMed  Google Scholar 

  8. Manschreck TC, Maher BA, Milavetz JJ et al (1988) Semantic priming in thought disordered schizophrenic patients. Schizophr Res 1(1):61–66. https://doi.org/10.1016/0920-9964(88)90041-2

    Article  CAS  PubMed  Google Scholar 

  9. Kuperberg GR (2010) Language in schizophrenia Part 2: What can psycholinguistics bring to the study of schizophrenia… and vice versa? Lang Linguistics Compass 4(8):590–604. https://doi.org/10.1111/j.1749-818X.2010.00217.x

    Article  Google Scholar 

  10. Rossell SL, Rabe-Hesketh SS, Shapleske JS et al (1999) Is semantic fluency differentially impaired in schizophrenic patients with delusions? J Clin Exp Neuropsychol 21(5):629–642. https://doi.org/10.1076/jcen.21.5.629.865

    Article  CAS  PubMed  Google Scholar 

  11. Kuperberg GR, Kreher DA, Ditman T (2010) What can event-related Potentials tell us about language, and perhaps even thought in schizophrenia? Int J Psychophysiol 75(2):66–76. https://doi.org/10.1016/j.ijpsycho.2009.09.005

    Article  PubMed  Google Scholar 

  12. Li X, Branch CA, DeLisi LE (2009) Language pathway abnormalities in schizophrenia: a review of fMRI and other imaging studies. Curr Opin Psychiatry 22(2):131–139. https://doi.org/10.1097/YCO.0b013e328324bc43

    Article  CAS  PubMed  Google Scholar 

  13. Szycik GR, Munte TF, Dillo W et al (2009) Audiovisual integration of speech is disturbed in schizophrenia: an fMRI study. Schizophr Res 110(1–3):111–118. https://doi.org/10.1016/j.schres.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  14. Kuperberg GR, Deckersbach T, Holt DJ et al (2007) Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Arch Gen Psychiatry 64(2):138–151. https://doi.org/10.1001/archpsyc.64.2.138

    Article  PubMed  Google Scholar 

  15. Sass K, Heim S, Sachs O et al (2014) Neural correlates of semantic associations in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 264(2):143–154. https://doi.org/10.1007/s00406-013-0425-0

    Article  PubMed  Google Scholar 

  16. Arcuri SM, Broome MR, Giampietro V et al (2012) Faulty suppression of irrelevant material in patients with thought disorder linked to attenuated frontotemporal activation. Schizophr Res Treatment 2012:176290. https://doi.org/10.1155/2012/176290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ragland JD, Moelter ST, Bhati MT et al (2008) Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophr Res 99(1–3):312–323. https://doi.org/10.1016/j.schres.2007.11.017

    Article  CAS  PubMed  Google Scholar 

  18. Sass K, Heim S, Sachs O et al (2010) Why the leash constrains the dog: the impact of semantic associations on sentence production. Acta Neurobiol Exp(Wars) 70:435–453

    Google Scholar 

  19. Levelt WJM, Roelofs A, Meyer AS (1999) A theory of lexical access in speech production. Behav Brain Sci 22(1):1–38

    CAS  PubMed  Google Scholar 

  20. Estes Z, Golonka S, Jones LL (2011) Thematic thinking: the apprehension and consequences of thematic relations. Psychol Learn Motivation Adv Res Theory 54:249

    Article  Google Scholar 

  21. Lin EL, Murphy GL (2001) Thematic relations in adults’ concepts. J Exp Psychol Gen 130(1):3–28. https://doi.org/10.1037/0096-3445.130.1.3

    Article  CAS  PubMed  Google Scholar 

  22. Muehlhaus J, Heim S, Altenbach F et al (2014) Deeper insights into semantic relations: an fMRI study of part-whole and functional associations. Brain Lang 129:30–42. https://doi.org/10.1016/j.bandl.2014.01.003

    Article  PubMed  Google Scholar 

  23. Levelt WJM, Meyer AS (2000) Word for word. Multiple lexical access in speech production. Eur J Cogn Psychol 12(4):433–452. https://doi.org/10.1080/095414400750050178

    Article  Google Scholar 

  24. Konopka AE (2012) Planning ahead. How recent experience with structures and words changes the scope of linguistic planning. J Mem Lang 66(1):143–162. https://doi.org/10.1016/j.jml.2011.08.003

    Article  Google Scholar 

  25. Zhao L-M, Yang Y-F (2016) Lexical Planning in sentence production is highly incremental. Evidence from ERPs. PloS one 11(1):e0146359. https://doi.org/10.1371/journal.pone.0146359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levelt WJ (2001) Spoken word production. A theory of lexical access. Proc Natl Acad Sci USA 98(23):13464–13471. https://doi.org/10.1073/pnas.231459498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Myers S, Robertson EK (2015) A Closer look at phonology as a predictor of spoken sentence processing and word reading. J Psycholinguistic Res 44(4):399–415. https://doi.org/10.1007/s10936-014-9292-8

    Article  Google Scholar 

  28. Smith M, Wheeldon L (2004) Horizontal information flow in spoken sentence production. J Exp Psychol Learn Mem Cogn 30(3):675–686. https://doi.org/10.1037/0278-7393.30.3.675

    Article  PubMed  Google Scholar 

  29. Wagner V, Jescheniak JD, Schriefers H (2010) On the flexibility of grammatical advance planning during sentence production. Effects of cognitive load on multiple lexical access. J Exp Psychol Learn Mem Cogn 36(2):423–440. https://doi.org/10.1037/a0018619

    Article  PubMed  Google Scholar 

  30. Freunberger D, Nieuwland MS (2016) Incremental comprehension of spoken quantifier sentences: evidence from brain potentials. Brain Res 1646:475–481. https://doi.org/10.1016/j.brainres.2016.06.035

    Article  CAS  PubMed  Google Scholar 

  31. Konopka AE, Meyer AS (2014) Priming sentence planning. Cogn Psychol 73:1–40. https://doi.org/10.1016/j.cogpsych.2014.04.001

    Article  PubMed  Google Scholar 

  32. Muehlhaus J, Heim S, Sachs O et al (2013) Is the motor or the garage more important to the car? The difference between semantic associations in single word and sentence production. J Psycholinguistic Res 42(1):37–49. https://doi.org/10.1007/s10936-012-9209-3

    Article  Google Scholar 

  33. Binder JR, Desai RH, Graves WW et al (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral cortex (New York, N.Y.: 1991) 19(12):2767–2796. https://doi.org/10.1093/cercor/bhp055

    Article  PubMed Central  Google Scholar 

  34. Canini M, Della Rosa PA, Catricala E et al (2016) Semantic interference and its control: a functional neuroimaging and connectivity study. Hum Brain Mapp 37(11):4179–4196. https://doi.org/10.1002/hbm.23304

    Article  PubMed  PubMed Central  Google Scholar 

  35. Abdel Rahman R, Melinger A (2007) When bees hamper the production of honey: lexical interference from associates in speech production. J Exp Psychol Learn Mem Cogn 33(3):604–614. https://doi.org/10.1037/0278-7393.33.3.604

    Article  PubMed  Google Scholar 

  36. Abdel Rahman R, Melinger A (2009) Semantic context effects in language production. A swinging lexical network proposal and a review. Lang Cogn Process 24(5):713–734. https://doi.org/10.1080/01690960802597250

    Article  Google Scholar 

  37. Riley E, McMahon KL, Zubicaray G de (2015) Long-lasting semantic interference effects in object naming are not necessarily conceptually mediated. Front Psychol 6:578. https://doi.org/10.3389/fpsyg.2015.00578

    Article  PubMed  PubMed Central  Google Scholar 

  38. Zubicaray G de, Johnson K, Howard D et al (2014) A perfusion fMRI investigation of thematic and categorical context effects in the spoken production of object names. Cortex 54:135–149. https://doi.org/10.1016/j.cortex.2014.01.018

    Article  PubMed  Google Scholar 

  39. Zubicaray G de, McMahon K, Eastburn M et al (eds) (2006) Top-down influences on lexical selection during spoken word production. A 4T fMRI investigation of refractory effects in picture naming. Hum Brain Mapp 27(11):864–873

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hocking J, McMahon KL, Zubicaray GI de (eds) (2009) Semantic context and visual feature effects in object naming. An fMRI study using arterial spin labeling. J Cogn Neurosci 21(8):1571–1583

    Article  PubMed  Google Scholar 

  41. Alario F-X, Chainay H, Lehericy S et al (eds) (2006) The role of the supplementary motor area (SMA) in word production. Brain Res 1076(1):129–143

    Article  CAS  PubMed  Google Scholar 

  42. Schwartz MF, Kimberg DY, Walker GM et al (2011) Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proc Natl Acad Sci USA 108(20):8520–8524. https://doi.org/10.1073/pnas.1014935108

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zubicaray GI de, Hansen S, McMahon KL (2013) Differential processing of thematic and categorical conceptual relations in spoken word production. J Exp Psychol Gen 142(1):131–142. https://doi.org/10.1037/a0028717

    Article  PubMed  Google Scholar 

  44. Grande M, Meffert E, Schoenberger E et al (2012) From a concept to a word in a syntactically complete sentence. An fMRI study on spontaneous language production in an overt picture description task. NeuroImage 61(3):702–714. https://doi.org/10.1016/j.neuroimage.2012.03.087

    Article  PubMed  Google Scholar 

  45. Heim S, Eickhoff SB, Amunts K (2008) Specialisation in Broca’s region for semantic, phonological, and syntactic fluency? NeuroImage 40(3):1362–1368. https://doi.org/10.1016/j.neuroimage.2008.01.009

    Article  PubMed  Google Scholar 

  46. Heim S, Eickhoff SB, Friederici AD et al (2009) Left cytoarchitectonic area 44 supports selection in the mental lexicon during language production. Brain Struct Funct 213(4–5):441–456. https://doi.org/10.1007/s00429-009-0213-9

    Article  PubMed  PubMed Central  Google Scholar 

  47. Humphreys GF, Gennari SP (2014) Competitive mechanisms in sentence processing. Common and distinct production and reading comprehension networks linked to the prefrontal cortex. NeuroImage 84:354–366. https://doi.org/10.1016/j.neuroimage.2013.08.059

    Article  PubMed  Google Scholar 

  48. Mirman D, Landrigan J-F, Britt AE (2017) Taxonomic and thematic semantic systems. Psychol Bull 143(5):499–520. https://doi.org/10.1037/bul0000092

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kircher TTJ, Oh TM, Brammer MJ et al (2005) Neural correlates of syntax production in schizophrenia. Br J Psychiatry 186(3):209–214

    Article  PubMed  Google Scholar 

  50. Wittchen H-U, Zaudig M, Fydrich T (1997) SKID. Strukturiertes klinisches Interview für DSM-IV. Achse I und II. Handanweisung, 1st edn. Hogrefe, Göttingen

    Google Scholar 

  51. Kay SR, Fiszbein A, Opler LA (1987) The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophr Bull 13(2):261–276. https://doi.org/10.1093/schbul/13.2.261

    Article  CAS  PubMed  Google Scholar 

  52. Schmidt K-H, Metzler P (1992) WST. Wortschatztest, 1st edn. Beltz Test, Weinheim

    Google Scholar 

  53. Aschenbrenner S, Tucha O, Lange KW (2001) RWT. Regensburger Wortflüssigkeits-Test. Handanweisung, 1st edn. Hogrefe, Göttingen

    Google Scholar 

  54. Tewes U (1991) HAWIE-R. Hamburg-Wechsler Intelligenztest für Erwachsene—Revision. Handbuch und Testanweisungen. Huber, Bern

    Google Scholar 

  55. Reitan R (1958) Validity of the trail making test as an indicator of organic brain damage. PMS 8(7):271. https://doi.org/10.2466/PMS.8.7.271-276

    Article  Google Scholar 

  56. Brickenkamp R, Schmidt-Atzert L, Liepmann D (2010) Test d2-Revision. Aufmerksamkeits- und Konzantrationstest. Handanweisung, 1st edn. Hogrefe, Göttingen

    Google Scholar 

  57. Oldfield RC (1971) The assessment and analysis of handedness. The Edinburgh inventory. Neuropsychologia 9(1):97–113. https://doi.org/10.1016/0028-3932(71)90067-4

    Article  CAS  PubMed  Google Scholar 

  58. Maß R (2001) ESI. Eppendorfer Schizophrenie-Inventar, 1st edn. Hogrefe, Göttingen

    Google Scholar 

  59. Szekely A, Damico S, Devescovi A et al (2005) Timed action and object naming. Cortex 41(1):7–25. https://doi.org/10.1016/S0010-9452(08)70174-6

    Article  PubMed  Google Scholar 

  60. Heim S, Amunts K, Mohlberg H et al (2006) Head motion during overt language production in functional magnetic resonance imaging. Neuroreport 17(6):579–582

    Article  PubMed  Google Scholar 

  61. Cohen I (2004) Multichannel post-filtering in nonstationary noise environments. IEEE Trans Signal Process 52(5):1149–1160. https://doi.org/10.1109/TSP.2004.826166

    Article  Google Scholar 

  62. Cusack R, Cumming N, Bor D et al (2005) Automated post-hoc noise cancellation tool for audio recordings acquired in an MRI scanner. Hum Brain Mapp 24(4):299–304. https://doi.org/10.1002/hbm.20085

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ternström S (2005) Does the acoustic waveform mirror the voice? Logop Phoniatr Vocol 30(3–4):100–107. https://doi.org/10.1080/14015430500238400

    Article  Google Scholar 

  64. Howard DM (2005) Discussant response to ‘Does the acoustic waveform mirror the voice?’ Logop Phoniatr Vocol 30(3–4): 108–113. https://doi.org/10.1080/14015430500358570

    Article  Google Scholar 

  65. Duyck W, Anseel F, Szmalec A et al (2008) Improving accuracy in detecting acoustic onsets. J Exp Psychol Hum Percept Perform 34(5):1317–1326. https://doi.org/10.1037/0096-1523.34.5.1317

    Article  PubMed  Google Scholar 

  66. Rastle K, Davis MH (2002) On the complexities of measuring naming. J Exp Psychol Hum Percept Perform 28(2):307–314. https://doi.org/10.1037//0096-1523.28.2.307

    Article  PubMed  Google Scholar 

  67. Henseler I, Mädebach A, Kotz SA et al (2014) Modulating brain mechanisms resolving lexico-semantic Interference during word production: a transcranial direct current stimulation study. J Cogn Neurosci 26(7):1403–1417. https://doi.org/10.1162/jocn_a_00572

    Article  PubMed  Google Scholar 

  68. Eickhoff SB, Stephan KE, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034

    Article  PubMed  Google Scholar 

  69. Salavera C, Puyuelo M, Antonanzas JL et al (2013) Semantics, pragmatics, and formal thought disorders in people with schizophrenia. Neuropsychiatr Dis Treatment 9:177–183. https://doi.org/10.2147/NDT.S38676

    Article  Google Scholar 

  70. Manoach DS (2017) Cognitive deficits in schizophrenia. In: Reference module in neuroscience and biobehavioral psychology. Elsevier. http://nmr.mgh.harvard.edu/manoachlab/pubs/Manoach_cognition_sz_2017.pdf. Accessed 7 Aug 2018

  71. Tremblay P, Dick AS (2016) Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang 162:60–71. https://doi.org/10.1016/j.bandl.2016.08.004

    Article  PubMed  Google Scholar 

  72. Zimmerer VC, Watson S, Turkington D et al (2017) Deictic and Propositional Meaning-New Perspectives on Language in Schizophrenia. Front Psychiatry 8:17. https://doi.org/10.3389/fpsyt.2017.00017

    Article  PubMed  PubMed Central  Google Scholar 

  73. Price CJ (2010) The anatomy of language: a review of 100 fMRI studies published in 2009. Ann N Y Acad Sci 1191:62–88. https://doi.org/10.1111/j.1749-6632.2010.05444.x

    Article  PubMed  Google Scholar 

  74. Crosson B (2013) Thalamic mechanisms in language: a reconsideration based on recent findings and concepts. Brain Lang 126(1):73–88. https://doi.org/10.1016/j.bandl.2012.06.011

    Article  PubMed  Google Scholar 

  75. Hebb AO, Ojemann GA (2013) The thalamus and language revisited. Brain Lang 126(1):99–108. https://doi.org/10.1016/j.bandl.2012.06.010

    Article  PubMed  Google Scholar 

  76. Marien P, Ackermann H, Adamaszek M et al (2014) Consensus paper: Language and the cerebellum: an ongoing enigma. Cerebellum 13(3):386–410. https://doi.org/10.1007/s12311-013-0540-5

    Article  PubMed  PubMed Central  Google Scholar 

  77. Moore AB, Li Z, Tyner CE et al (2013) Bilateral basal ganglia activity in verbal working memory. Brain Lang 125(3):316–323. https://doi.org/10.1016/j.bandl.2012.05.003

    Article  PubMed  Google Scholar 

  78. Crosson B, Benefield H, Cato MA et al (2003) Left and right basal ganglia and frontal activity during language generation: contributions to lexical, semantic, and phonological processes. J Int Neuropsychol Soc 9(7):1061–1077. https://doi.org/10.1017/S135561770397010X

    Article  PubMed  Google Scholar 

  79. Eickhoff SB, Heim S, Zilles K et al (2009) A systems perspective on the effective connectivity of overt speech production. Philos Trans Ser A Math Phys Eng Sci 367(1896):2399–2421. https://doi.org/10.1098/rsta.2008.0287

    Article  Google Scholar 

  80. Moro A, Tettamanti M, Perani D et al (2001) Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage 13(1):110–118. https://doi.org/10.1006/nimg.2000.0668

    Article  CAS  PubMed  Google Scholar 

  81. Ali N, Green DW, Kherif F et al (2010) The role of the left head of caudate in suppressing irrelevant words. J Cogn Neurosci 22(10):2369–2386. https://doi.org/10.1162/jocn.2009.21352

    Article  PubMed  PubMed Central  Google Scholar 

  82. Argyropoulos GP, Tremblay P, Small SL (2013) The neostriatum and response selection in overt sentence production. An fMRI study. NeuroImage 82:53–60. https://doi.org/10.1016/j.neuroimage.2013.05.064

    Article  PubMed  Google Scholar 

  83. Friederici AD (2006) What’s in control of language? Nat Neurosci 9(8):991–992. https://doi.org/10.1038/nn0806-991

    Article  CAS  PubMed  Google Scholar 

  84. Groenholm EO, Roll MC, Horne MA et al (2016) Predominance of caudate nucleus lesions in acute ischaemic stroke patients with impairment in language and speech. Eur J Neurol 23(1):148–153. https://doi.org/10.1111/ene.12822

    Article  Google Scholar 

  85. Duffau H, Moritz-Gasser S, Mandonnet E (2014) A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang 131:1–10. https://doi.org/10.1016/j.bandl.2013.05.011

    Article  PubMed  Google Scholar 

  86. Robles SG, Gatignol P, Capelle L et al (2005) The role of dominant striatum in language: a study using intraoperative electrical stimulations. J Neurol Neurosurg Psychiatry 76(7):940–946. https://doi.org/10.1136/jnnp.2004.045948

    Article  PubMed Central  Google Scholar 

  87. Andreasen NC, Pierson R (2008) The role of the cerebellum in schizophrenia. Biol Psychiatry 64(2):81–88. https://doi.org/10.1016/j.biopsych.2008.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kuperberg GR, Delaney-Busch N, Fanucci K et al (2017) Priming p roduction. Neural evidence for enhanced automatic semantic activity preceding language production in schizophrenia. NeuroImage Clin. https://doi.org/10.1016/j.nicl.2017.12.026

    Article  PubMed  PubMed Central  Google Scholar 

  89. Heim S, Eickhoff SB, Amunts K (2009) Different roles of cytoarchitectonic BA 44 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic causal modelling. NeuroImage 48(3):616–624. https://doi.org/10.1016/j.neuroimage.2009.06.044

    Article  PubMed  Google Scholar 

  90. Wensing T, Cieslik EC, Müller VI et al (2017) Neural correlates of formal thought disorder. An activation likelihood estimation meta-analysis. Hum Brain Mapp 38(10):4946–4965. https://doi.org/10.1002/hbm.23706

    Article  PubMed  PubMed Central  Google Scholar 

  91. Indefrey P, Hagoort P, Herzog H et al (2001) Syntactic processing in left prefrontal cortex is independent of lexical meaning. NeuroImage 14(3):546–555. https://doi.org/10.1006/nimg.2001.0867

    Article  CAS  PubMed  Google Scholar 

  92. Hagoort P, Indefrey P (2014) The neurobiology of language beyond single words. Ann Rev Neurosci 37:347–362. https://doi.org/10.1146/annurev-neuro-071013-013847

    Article  CAS  PubMed  Google Scholar 

  93. Heim S, van Ermingen M, Huber W et al (2010) Left cytoarchitectonic BA 44 processes syntactic gender violations in determiner phrases. Hum Brain Mapp 31(10):1532–1541. https://doi.org/10.1002/hbm.20957

    Article  PubMed  PubMed Central  Google Scholar 

  94. Friederici AD (2006) The neural basis of language development and its impairment. Neuron 52(6):941–952. https://doi.org/10.1016/j.neuron.2006.12.002

    Article  CAS  PubMed  Google Scholar 

  95. Friederici AD, Fiebach CJ, Schlesewsky M et al (2006) Processing linguistic complexity and grammaticality in the left frontal cortex. Cereb Cortex (New York, N.Y.: 1991) 16(12):1709–1717. https://doi.org/10.1093/cercor/bhj106

    Article  Google Scholar 

  96. Friederici AD, Gierhan SME (2013) The language network. Curr Opin Neurobiol 23(2):250–254. https://doi.org/10.1016/j.conb.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  97. Santi A, Grodzinsky Y (2010) fMRI adaptation dissociates syntactic complexity dimensions. NeuroImage 51(4):1285–1293. https://doi.org/10.1016/j.neuroimage.2010.03.034

    Article  PubMed  Google Scholar 

  98. Santi A, Friederici AD, Makuuchi M et al (2015) An fMRI study dissociating distance measures computed by Broca’s area in movement processing. Clause boundary vs. identity. Front Psychol 6:654. https://doi.org/10.3389/fpsyg.2015.00654

    Article  PubMed  PubMed Central  Google Scholar 

  99. Kircher TTJ, Leube DT, Erb M et al (2007) Neural correlates of metaphor processing in schizophrenia. NeuroImage 34(1):281–289. https://doi.org/10.1016/j.neuroimage.2006.08.044

    Article  PubMed  Google Scholar 

  100. Bzdok D, Meyer-Lindenberg A (2018) Machine learning for precision psychiatry. Opportunities and challenges. Biological psychiatry. Cogn Neurosci Neuroimaging 3(3):223–230. https://doi.org/10.1016/j.bpsc.2017.11.007

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG, IRTG 1328), the START Program (Grant Number 690934) of the Faculty of Medicine at RWTH Aachen University, and the IZKF Aachen (Interdisciplinary Center for Clinical Research within the Faculty of Medicine at RWTH Aachen University). We appreciate the valuable input we received from Katharina Sass on issues of the neurolinguistics of semantic processing. Furthermore, we thank Uli Heuter and Fabian Altenbach for technical support with the behavioral data analysis and André Schüppen from the Core Facility IZKF for Interdisciplinary Clinical Research for recommendations on imaging analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Heim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Standards

The study has been approved by the ethics committee of the University Clinic, RWTH Aachen University, Germany and has been conducted according to the ethical standards laid down in the Declaration of Helsinki. All subjects gave their informed consent prior to inclusion in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Creyaufmüller, M., Heim, S., Habel, U. et al. The influence of semantic associations on sentence production in schizophrenia: an fMRI study. Eur Arch Psychiatry Clin Neurosci 270, 359–372 (2020). https://doi.org/10.1007/s00406-018-0936-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-018-0936-9

Keywords

Navigation