Skip to main content
Log in

Neural correlates of semantic associations in patients with schizophrenia

  • Original Paper
  • Published:
European Archives of Psychiatry and Clinical Neuroscience Aims and scope Submit manuscript

Abstract

Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The use of CPZ equivalents is a common practice to chart the relative antipsychotic potencies of antipsychotic drugs.

  2. As one anonymous reviewer pointed out medication and illness duration might be considered as covariates for the analyses. However, an earlier meta-analysis showed that duration of illness had no effect on results of semantic priming [33]. However, we tried to keep our patient sample as homogeneous as possible via including only moderately ill patients. Medication status clearly influences neurocognitive functions but only patients that were on stable doses of atypical antipsychotic medication were included (e.g., risperidone, aripiprazole, quetiapine). In addition, earlier studies did not found any relation between medication and verbal memory in the treatment of schizophrenia [37].

  3. We thank one anonymous reviewer for this suggestion.

References

  1. Amodio DM, Frith CD (2006) Meeting of minds: the medial frontal cortex and social cognition. Nat Rev 7:268–277

    Article  CAS  Google Scholar 

  2. Andreasen NC (1984a) The scale for the assessment of negative symptoms (sans). University of Iowa, Iowa City

    Google Scholar 

  3. Andreasen NC (1984b) The scale for the assessment of positive symptoms (saps). University of Iowa, Iowa City

    Google Scholar 

  4. Andreasen NC (1997) The role of the thalamus in schizophrenia. Can J Psychiatry 42:27–33

    CAS  PubMed  Google Scholar 

  5. Assaf M, Calhoun VD, Kuzu CH, Kraut MA, Rivkin PR, Hart J Jr, Pearlson GD (2006) Neural correlates of the object-recall process in semantic memory. Psychiatry Res 147:115–126

    Article  PubMed  Google Scholar 

  6. Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796

    Article  PubMed  Google Scholar 

  7. Copland DA, de Zubicaray GI, McMahon K, Eastburn M (2007) Neural correlates of semantic priming for ambiguous words: an event-related fMRI study. Brain Res 1131:163–172

    Article  CAS  PubMed  Google Scholar 

  8. David AS (1994) Dysmodularity: a neurocognitive model for schizophrenia. Schizophr Bull 20:249–255

    Article  CAS  PubMed  Google Scholar 

  9. de Gelder B, Vroomen J, Annen L, Masthof E, Hodiamont P (2002) Audio-visual integration in schizophrenia. Schizophr Res 59:211–218

    Article  Google Scholar 

  10. de Gelder B, Vroomen J, de Jong SJ, Masthoff ED, Trompenaars FJ, Hodiamont P (2005) Multisensory integration of emotional faces and voices in schizophrenics. Schizophr Res 72:195–203

    Article  PubMed  Google Scholar 

  11. Docherty NM, Gordinier SW, Hall MJ, Dombrowski ME (2004) Referential communication disturbances in the speech of nonschizophrenic siblings of schizophrenia patients. J Abnorm Psychol 113:399–405

    Article  PubMed  Google Scholar 

  12. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new spm toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335

    Article  PubMed  Google Scholar 

  13. Fodor JA (1983) Modularity of mind: an essay on faculty psychology. MIT Press, Cambridge

    Google Scholar 

  14. Froud K, Titone D, Marantz A, Levy DL (2010) Brain/behavior asymmetry in schizophrenia: a meg study of cross-modal semantic priming. J Neurolinguistics 23:223–239

    Article  PubMed Central  PubMed  Google Scholar 

  15. Han SD, Wible CG (2010) Neuroimaging of semantic processing in schizophrenia: a parametric priming approach. Int J Psychophysiol 75:100–106

    Article  PubMed Central  PubMed  Google Scholar 

  16. Henson R (2003) Neuroimaging studies of priming. Prog Neurobiol 70:53–81

    Article  CAS  PubMed  Google Scholar 

  17. Jamadar S, O’Neil KM, Pearlson GD, Ansari M, Gill A, Jagannathan K, Assaf M (2013) Impairment in semantic retrieval is associated with symptoms in schizophrenia but not bipolar disorder. Biol Psychiatry 73:555–564

    Article  PubMed  Google Scholar 

  18. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale (panss) for schizophrenia. Schizophr Bull 13:261–276

    Article  CAS  PubMed  Google Scholar 

  19. Kircher TT, Sass K, Sachs O, Krach S (2009) Priming words with pictures: neural correlates of semantic associations in a cross-modal priming task using fMRI. Hum Brain Mapp 30:4116–4128

    Article  PubMed  Google Scholar 

  20. Kubicki M, McCarley RW, Nestor PG, Huh T, Kikinis R, Shenton ME, Wible CG (2003) An fMRI study of semantic processing in men with schizophrenia. Neuroimage 20:1923–1933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Kuperberg GR, Deckersbach T, Holt DJ, Goff D, West WC (2007) Increased temporal and prefrontal activity in response to semantic associations in schizophrenia. Arch Gen Psychiatry 64:138–151

    Article  PubMed  Google Scholar 

  22. Kuperberg GR, Lakshmanan BM, Greve DN, West WC (2008) Task and semantic relationship influence both the polarity and localization of hemodynamic modulation during lexico-semantic processing. Hum Brain Mapp 29:544–561

    Article  PubMed Central  PubMed  Google Scholar 

  23. Lehrl S (2005) Mehrfachwahl-wortschatz-intelligenztest mwt-b. Spitta Verlag, Balingen

    Google Scholar 

  24. Mathalon DH, Faustman WO, Ford JM (2002) N400 and automatic semantic processing abnormalities in patients with schizophrenia. Arch Gen Psychiatry 59:641–648

    Article  PubMed  Google Scholar 

  25. Minzenberg MJ, Ober BA, Vinogradov S (2002) Semantic priming in schizophrenia: a review and synthesis. J Int Neuropsychol Soc 8:699–720

    PubMed  Google Scholar 

  26. Moritz S, Mersmann K, Kloss M, Jacobsen D, Wilke U, Andresen B, Naber D, Pawlik K (2001) ‘Hyper-priming’ in thought-disordered schizophrenic patients. Psychol Med 31:221–229

    Article  CAS  PubMed  Google Scholar 

  27. Neely JH (1991) Semantic priming effects in visual word recognition: a selective review of current findings and theories. In: Besner D, Humphreys GW (eds) Basic processes in reading: visual word recognition. Lawrence Erlbaum, Hillsdale (NJ), pp 264–336

    Google Scholar 

  28. Nestor PG, Valdman O, Niznikiewicz M, Spencer K, McCarley RW, Shenton ME (2006) Word priming in schizophrenia: associational and semantic influences. Schizophr Res 82:139–142

    Article  PubMed Central  PubMed  Google Scholar 

  29. Niznikiewicz M, Mittal MS, Nestor PG, McCarley RW (2010) Abnormal inhibitory processes in semantic networks in schizophrenia. Int J Psychophysiol 75:133–140

    Article  CAS  PubMed  Google Scholar 

  30. Niznikiewicz MA, Friedman M, Shenton ME, Voglmaier M, Nestor PG, Frumin M, Seidman L, Sutton J, McCarley RW (2004) Processing sentence context in women with schizotypal personality disorder: an ERP study. Psychophysiology 41:367–371

    Article  PubMed Central  PubMed  Google Scholar 

  31. Oldfield RC (1971) The assessment and analysis of handedness: the edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  32. Pomarol-Clotet E, Oh TM, Laws KR, McKenna PJ (2008) Semantic priming in schizophrenia: systematic review and meta-analysis. Br J Psychiatry 192:92–97

    Article  CAS  PubMed  Google Scholar 

  33. Raettig T, Kotz SA (2008) Auditory processing of different types of pseudo-words: an event-related fMRI study. Neuroimage 39:1420–1428

    Article  PubMed  Google Scholar 

  34. Ragland JD, Gur RC, Raz J, Schroeder L, Kohler CG, Smith RJ, Alavi A, Gur RE (2001) Effect of schizophrenia on frontotemporal activity during word encoding and recognition: a pet cerebral blood flow study. Am J Psychiatry 158:1114–1125

    Article  CAS  PubMed  Google Scholar 

  35. Ragland JD, Moelter ST, Bhati MT, Valdez JN, Kohler CG, Siegel SJ, Gur RC, Gur RE (2008) Effect of retrieval effort and switching demand on fMRI activation during semantic word generation in schizophrenia. Schizophr Res 99:312–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rametti G, Junque C, Vendrell P, Catalan R, Penades R, Bargallo N, Bernardo M (2009) Hippocampal underactivation in an fMRI study of word and face memory recognition in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:203–211

    Article  PubMed  Google Scholar 

  37. Raposo A, Moss HE, Stamatakis EA, Tyler LK (2006) Repetition suppression and semantic enhancement: an investigation of the neural correlates of priming. Neuropsychologia 44:2284–2295

    Article  CAS  PubMed  Google Scholar 

  38. Ratcliff R (1993) Methods for dealing with reaction time outliers. Psychol Bull 114:510–532

    Article  CAS  PubMed  Google Scholar 

  39. Ross LA, Saint-Amour D, Leavitt VM, Molholm S, Javitt DC, Foxe JJ (2007) Impaired multisensory processing in schizophrenia: deficits in the visual enhancement of speech comprehension under noisy environmental conditions. Schizophr Res 97:173–183

    Article  PubMed  Google Scholar 

  40. Rossell SL, Price CJ, Nobre AC (2003) The anatomy and time course of semantic priming investigated by fMRI and ERPs. Neuropsychologia 41:550–564

    Article  PubMed  Google Scholar 

  41. Sass K, Krach S, Sachs O, Kircher T (2009) Lion–tiger–stripes: neural correlates of indirect semantic priming across processing modalities. Neuroimage 45:224–236

    Article  PubMed  Google Scholar 

  42. Schmitt A, Hasan A, Gruber O, Falkai P (2011) Schizophrenia as a disorder of disconnectivity. Eur Arch Psychiatry Clin Neurosci 261(Suppl 2):S150–S154

    Article  PubMed  Google Scholar 

  43. Seubert J, Loughead J, Kellermann T, Boers F, Brensinger CM, Habel U (2010) Multisensory integration of emotionally valenced olfactory-visual information in patients with schizophrenia and healthy controls. J Psychiatry Neurosci 35:185–194

    Article  PubMed Central  PubMed  Google Scholar 

  44. Slotnick SD (2003) Model fitting in (n+1) dimensions. Behav Res Methods Instrum Comput 35:322–324

    Article  PubMed  Google Scholar 

  45. Spitzer M, Braun U, Hermle L, Maier S (1993) Associative semantic network dysfunction in thought-disordered schizophrenic patients: direct evidence from indirect semantic priming. Biol Psychiatry 34:864–877

    Article  CAS  PubMed  Google Scholar 

  46. Spitzer M, Braun U, Maier S, Hermle L, Maher BA (1993) Indirect semantic priming in schizophrenic patients. Schizophr Res 11:71–80

    Article  CAS  PubMed  Google Scholar 

  47. Straube B, Green A, Sass K, Kirner-Veselinovic A, Kircher T (2012) Neural integration of speech and gesture in schizophrenia: evidence for differential processing of metaphoric gestures. Hum Brain Mapp 34:1696–1712

  48. Surguladze S, Rossell S, Rabe-Hesketh S, David AS (2002) Cross-modal semantic priming in schizophrenia. J Int Neuropsychol Soc 8:884–892

    PubMed  Google Scholar 

  49. Titone D, Holzman PS, Levy DL (2002) Idiom processing in schizophrenia: literal implausibility saves the day for idiom priming. J Abnorm Psychol 111:313–320

    Article  PubMed  Google Scholar 

  50. Wible CG, Han SD, Spencer MH, Kubicki M, Niznikiewicz MH, Jolesz FA, McCarley RW, Nestor P (2006) Connectivity among semantic associates: an fMRI study of semantic priming. Brain Lang 97:294–305

    Article  PubMed  Google Scholar 

  51. Wiggs CL, Martin A (1998) Properties and mechanisms of perceptual priming. Curr Opin Neurobiol 8:227–233

    Article  CAS  PubMed  Google Scholar 

  52. Williams LE, Light GA, Braff DL, Ramachandran VS (2010) Reduced multisensory integration in patients with schizophrenia on a target detection task. Neuropsychologia 48:3128–3136

    Article  PubMed Central  PubMed  Google Scholar 

  53. Wittchen H-U, Zaudig M, Fydrich T (1997) Skid—strukturiertes klinisches interview für dsm-iv. Hogrefe, Göttingen

    Google Scholar 

Download references

Acknowledgments

We thank Georg Eder for fMRI data acquisition and Antonia Green for their support during the data collection as well as Franziska Kintzel for her help with data analyses. This work is supported by a grant from the Interdisciplinary Center for Clinical Research “BIOMAT” within the Faculty of Medicine at the RWTH Aachen University (IZKF VV N3) and by the International Research Training Group (IRTG 1328) of the German Research Foundation (DFG). KS funded by a grant from the German Research Foundation (DFG, SA 2221/3-1).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Sass.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sass, K., Heim, S., Sachs, O. et al. Neural correlates of semantic associations in patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci 264, 143–154 (2014). https://doi.org/10.1007/s00406-013-0425-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00406-013-0425-0

Keywords

Navigation